

High-performance Computing
and the Art of Parallel
Programming

Developments in information technology and the computerisation of society
have created a data-rich world in many developed countries. There is an increas
ing imperative for geographers, social scientists and engineers to discover new
ways of coping with this information explosion in the context of an emerging
new machine age. The obvions answer is to exploit high-performance computing
to develop new tools and to solve both old and new problems. This
computational paradigm is destined to grow in importance.

High-pe1fonnance Computing and the Art of Parallel Progra1nining provides
a non-technical introduction to high-performance computing applications
together with advice about how begümers can start to write parallel programs.
The authors show what HPC can offer geographers and social scientists and how
it can be used in GIS. They provide examples ofwhere it has already been used
and suggestions for other areas of application in geography, GIS <U1d the social
sciences. Case studies drawn from geography explain the key prÜKiples and help
the reader to understand the logic and thought processes that lie behind parallel
programming.

Concerned with the art rather than the science of parallel programming this
volume provides a plain and practical introduction to a subject that has pre
viously been heavily encoded Îl1 computer jargon and will be useful to readers
with a general interest in the topic as well as those wishing to develop practical
parallel programming skills.

Stan Openshaw is Professor of Human Geography and Ian Turton is a Senior
Research Fellow in the geography department of the University of Leeds.

IIigh-perforfllance
Colllputing and the Art of
Parallel Prografllflling
An introduction for geographers, social
scientists and engineers

Stan Openshaw and Ian Turton

London and New York

Fisst published 2000
by Routledge
11 New Fetter Lane, London EC4P 4EE

Simultaneously published in the USA and Canada
by Routledge
29 West 35tl1 Street, New York, NY 10001

Rou.tlcdgc is rw imprint of the Taylor & Fmncis Grou.p

© 2000 Stan Openshaw and Ian Turton

The right of Stan Openshaw and !an Turton to be identified as tl1e
autl1ors of tlüs work has been asserted by tl1em in accordance with tl1e
Copyright, Designs and Patents Act 1988

Typeset in Galliard by
J&L Composition Ltd, Filey, Nortl1 Yorkshire
Printed and bound in Great Britain by St Edmundsbury Press, Bury
St Edmunds, Suffo lk

Ail rights reserved. No part of tl1is book may be reprinted or reproduced
or utilised in any form or by any electronic, mechanical , o r other means,
now known o r i1ereafter im;ented, including photocopying and recording,
or in any info nnation storage or retrieval syste111 , without pennission in
writing from tl1e publishers.

British Libm1')' Catalogu.i11g in Pu.bliwtion Data
A catalogue record for tlüs book is available from the British Library

Libmry of Crmgrcss Catalogi11g in Pu.bliwtùm Data
Openshaw, Stan.

High performance computing and tl1e art of parallel programming:
an introduction for geographers, social scientists, and engineers/
Stan Openshaw and Ian Turton.

p. cm
Includes bibliographicaJ references.
1. High performance computing. 2. Paralle l programming

(Computer science) I. Turton, Ian, 1952- . II. T itle.
QA76.88. 064 1999
004'.36-dc21 99-18439

CIP

ISBN 0-415- 15692-0

Contents

List of figures
List of tables
List of appendices
Dedication and acknowlcdgcnients

1 High-performance computing: why bother with it?

1.1 An HPC point ofview 1
1.2 HPC stimulatcs new rcsearch and creates new research

opportunities 2
1.3 Why parallel processing is irnportant 3
1.4 Pa1'allcl coinputing is the future of HPC 5
1.5 Aiins and objectives 7
1. 6 Fostcring a computational cultitre 8
1. 7 Plan of the book 10

2 High-performance computing applications in
geography and GIS

2.1 Introduction 12
2.2 Parallel prograinining 15
2.3 Geocoinputation 17
2.4 Raising HPC awarencss 19
2.5 HPC applications in geography and GIS 26
2. 6 Soine exainples of HPC applications in geography 29
2.7 Parallel GIS applications 42
2.8 Overcoining access barriers 45

3 Parallel and high-performance computing: concepts,
principles and theory

3.1 What is parallel coinputing? 47
3.2 Why parallel processing is irnportant 52
3.3 Highly and massively parallel processing 57

IX

X

Xll

Xlll

1

12

47

v1 Contents

3.4 Exa1nples of thinleing in parallel 62
3.5 Can pa1'allel machines eve1' be used efficient/y? 64
3.6 Building a wall in a parallel way 69
3. 7 A brief history of parallel cornputing 71
3.8 Conclusions 73

4 Types of parallel-processing hardware and
programming paradigms

4.1 Automatic parallelisation software 74
4.2 Computer architectures 76
4.3 The three principal types of HPC hardware 82
4.4 Levels of parallelism and identif)'ing the1n 88
4.5 Programming niodels 90
4. 6 Examples of each type of parallelis1n 91
4. 7 Conclusions 92

5 Programming vector supercomputers

5.1 Introduction 94
5.2 The secrets of vector processing 95
5.3 Vectorising)'Oitr code 99
5.4 Optimisation of perfonnance 100
5.5 A case study in JJector processing using the Marle 1

geographical analysis machine as an example 104
5. 6 Case study 2: origin-constrained spatial inte1'action

mode! 119
5. 7 Conclusions 122

6 Shared-loop and data parallel programming

6.1 Introduction 139
6.2 Miûti-tas/eing on shared-memory MIMD

machines 140
6.3 Parallelisation strategies 147
6.4 Data parallel programming 151
6.5 Conclusions 155

7 Parallel programming using simple message passing

7.1 Introduction 178
7.2 Message passing? 180
7.3 Message-passing software 182
7.4 How to use MPifor SPMD 184
7.5 Exa1nple 1: probably the world,s simplest MPI prograrn

that could be useful 186
7.6 Example 2: sum M numbers 188

74

94

139

178

7. 7 Example 3: a data parallel spatial interaction in
MPI 196

7.8 Conclusions 203

8 Parallelising the geographical analysis machine
using MPI

8.1 A data parallel GAM itsing MPI 211
8.2 Where is the parallelism in the GAM? 213
8.3 Loop 4 message passing 215
8. 4 Some alternatiJJe message-passing schemes 217
8.5 Doing epen better by taste farrning 219
8. 6 A tasle-farming GAM 221
8. 7 IinproJJements? 222
8. 8 Loop 0 complications 224
8.9 Multiple taslefarins 225
8.10 More adpanced MPI routines 225
8.11 Conclusions 225

9 Optimising performance and debugging hints

9.1 Introduction 235
9.2 First optimise your a/gorithm rathe1' than fiddling

with code 236
9.3 Now start to fiddle 238
9. 4 Scaleable performance 238
9.5 Exploit Amdahfs law 240
9. 6 Some MPI optirnisation secrets 241
9. 7 Debugging parallel code is harder than serial code 243
9. 8 Debugging message passing 244
9. 9 Defensive coding 247
9.10 Shared-rnemory debitgging 248
9.11 Message-passing debitgging 248
9.12 Conclusions 250

10 Putting it ail together

10.1 Bacleground 251
10.2 Introduction to benchmarleing 251
10.3 The spatial interaction mode! as a benchmar/e

code 253
10.4 The high-perforinance Fortran version 256
10.5 The message-passing code using MPI 258
10.6 The bulle synchronous parallel mode! 259
10.7 Measitring perforinance using MPI and serial

code 259

Contents vu

211

235

251

viii Contents

10.8 A cornparison of HPF and MPI codes 261
10.9 Conclusions 265

11 Epilogue for geographers and social scientists

11.1 Theglobal challenge 268
11.2 What has HPCgot to do with any ofthis? 272
11. 3 Revising the definition of geocomputation 2 72
11.4 A GIS-HPC research agenda 274
11.5 HPCfittt-tres ingeography, etc. 276

References and further reading
Index

268

277
283

Figures

1.1 A big BUT 10

2.1 Performance of a singly consu·ained spatial interaction 31
mode!

2.2 Arithmetic instability plot for a singly constrained spatial 32
interaction mode!

2.3 Arithmetic stability map for a two-parameter competing 33
destinations spatial interaction mode!

2 .4 Deprivation areas in Leeds/Bradford based on wards 38
2 .5 Deprivation areas in Leeds/Bradford based on ward-like 38

areas re-engineered from enumeration clisu-icts
4.1 A shared-memory machine 79
4.2 A clisu·ibuted-memory machine 80
6 .1 Cyclic and block clisu·ibution of data elements 155
7.1 Layout of the M numbers on a global- and a 189

clistributed-memory machine
7.2 Wall dock time for Example 2 194
7.3 Total processor time for Example 2 195
7 .4 Layout of spatial interaction model's arrays on a serial 197

processor or on multiple processors with a single global
memory

7 .5 A block decomposition approach to the layout of the 198
spatial interaction model's arrays for four processors with
clistributed memory

7 .6 A column decomposition of the layout of the spatial 199
interaction model's arrays for four processors

7.7 A row decomposition of the layout of the spatial 200
interaction model's arrays for four processors

8.1 Time taken to send a message as a fonction of 223
message size

Tables

2.1 Relative performance of a selection of available HPC
hardware on a social science benchrnark code in relation
to a 486 PC

2.2 Comparison of the performance of different types of
spatial interaction model

3.1 Sorne basic definitions and abbreviations
3.2 How to build a 1 Gflop computer
3. 3 How to build a 1 Tflop computer
3.4 Tilne taken to build a wall
3.5 Speed-up rimes for wall builders
3.6 Wall building: percentage efficiency
3.7 Sorne landrnark historical events in HPC
4.1 Flynn's taxonomy
4.2 Sorne cornmon hardware labels
4 .3 Exarnple ofvector processing
4.4 Levels of parallelism
4.5 Levels of granularity
5.1 Appel's speed-up of a program
5 .2 Vector processor results for the initial GAM/1 code on a

single Cray J90 processor
5.3 Summary ofeffects oftuning changes to GAM/l code
5 .4 Counts of floating-point operations
6.1 GAM test problems on Cray J90 with ten processors

using multi-tasking
7.1 The six most used MPI subroutines
8 .1 Loop 3 counts
8 .2 Five more basic MPI routines

10.1 Results for the parallel singly const:rained model with
1000 origins and 1000 destinations

10.2 Results for the serial singly const:ra.ined model with 1000
origins and 1000 destinations

10.3 Results for the parallel doubly constrained model with
1000 origins and 1000 destinations

23

36

52
58
58
70
70
70
72
77
77
84
88
89

102
llO

ll6
ll6
146

184
214
226
260

261

262

10.4 Results for the serial doubly constrained mode! with
1000 origins and 1000 destinations

1O .5 Comparison of MPI and HPF using the singly
constrained model

10.6 Cornparison of MPI and HPF using the singly
consu·ained model

10.7 Comparison of MPI and HPF using the doubly
consu·ained model

10.8 Comparison of MPI and HPF using the doubly
consu·ained model

Tables xi

262

263

263

264

264

Appendices

5 .1 Listing of GAM/1 Version 1
5 .2 Listing of GAM/l Version 8
5 .3 Listing of initial spatial interaction mode!
5.4 Listing of spatial interaction mode! with calculation

reduced by storing some results
5 .5 Listing of final version of spatial interaction mode!
6.1 Multi-tasking code of GAM Version 1
6.2 Multi-tasking code of GAM Version 8
6.3 Multi -tasking compilation of the spatial interaction mode!
6.4 HPF spatial interaction mode!
7 .1 Ping-pong code
7 .2 Summing M numbers in parallel
7.3 Answers to self-test questions
7.4 Spatial interaction mode! example
8 .1 GAM example

10.1 ~PF code fragment for a singly consu·ained spatial
111teract1on mode!

10.2 Parallelisation of a doubly constrained spatial interaction
mode!

122
127
135
136

137
156
169
175
176
204
205
206
207
226
266

267

Dedication and acknowledgements

This book is dedicated to the Economie and Social Science Research Council in
the l10pe that it may help them to realise the t1·emendous future importance of
h.igh-performance computing (HPC) and especially parallel programming to
geography and the social sciences more generally. The practical problems of
doing parallel processing are based on several years of experience in a geograpi
cal context and on a far shorter period of teaching and explaining it to masters
students in geography and GIS in the School of Geography at the University of
Leeds. So it can be assumed that geographers and perhaps other social scientists
represent our target market. However, we would hope that the task of explain
ing and teaching parallel processing suitable for a geographical readership using
applications from the world of GIS and modelling will also be useful to other
scientists interested in HPC and parallel computing. We were and remain fasci
nated by ail of it and hope that our interest and enthusiasm for parallel pro
gramming and HPC will successfully infect at least some of the readers of our
book. Malce no mistake, high-performance computing using parallel processors
creates many far-reaching new opportun.ities, particularly in the modelling of
complex human systems and in geographical data mining. Our hope is that the
principles and ideas described here will endure far longer dun any of d1e hard

ware used here.
Finally, we wish to dunk Maureen Rosindale for so patiently typing d1e orig

inal manuscript . We also most gratefully acknowledge the support of d1e EPSRC
via d1eir funding of d1e Human Systems Modelling Consortium at Leeds and
use of tl1e Cray T3D and Cray J90 supercomputers. The ESRC also helped by
keeping a small social science foot in d1e HPC door. Now d1at the door is ajar,
d1e challenge is to turn d1e triclde into a flood!

Stan Openshaw and fan Turton
Leeds, December 1998

1 High-performance computing:
why bother with it?

This chapter attempts to justify why high-performance computing (HPC) is rel
evant to geography, the social sciences and in general to GIS . It is of course also
very relevant to many other sciences. If you agree then maybe the effort of
learning how to program HPC hardware as outlined in subsequent chapters will
be very worth while. Even ifyou disagree, you may still find the content ofinter
est, particularly if you are a geographer or wish to see what applications of HPC
may be relevant to geographers as an illustration of computing outside the more
traditional areas of science . The underlying argument is that developments in
information technology and the computerisation of society are (and have)
created a data-rich world in many developed countries. There is an increasing
imperative for geographers, social scientists and engineers to discover new ways
of coping with this information explosion in the context of an emerging new
machine age. The obvions answer is to use the new technologies and exploit
high-performance computing to develop new tools to salve bath old and new
problems. The logic is undeniable. Sooner or later most disciplines, most
sciences and even most social sciences will become fully HPC-ised in the t\venty
füst century. This book is not about teaching the minutiae of this or that
parallel-programming language. Its aim is far more strategic. It seeks to persuade
you that the subject is important and then offers implementation-independent

strategic advice as how best to proceed.

1.1 An HPC point of view

The purpose of this chapter is to try to persuade you that high-performance
computing and parallel processing is potentially of considerable practical interest
and value to bath geographers and the world of geographical information
systems (GIS). We are aware that tlùs task is not straightforward, because it
requires changes in attitudes and culture. In a world where high-performance
computing (HPC) systems are now running at teraflop speeds (viz. about
15,000 rimes faster tlun tl1e fastest PC), tl1ree starlc choices face geographers:
(1) ignore it all; (2) forever be rest:ricted in what you can do because tl1e
computer systems you use are programmed by otl1ers and are in any case not
state-of-tl1e-art high-performance computers; or (3) learn how to pro gram the

2 High-performance computing: wh)' bother with it?

high-performance computer systems of now and the future so that you can use
them to do whatever you wish them to do . Most geographers involved in GIS
(and elsewhere social scientists) are already the hapless but seemingly willing vic
tims of a virulent form of 'let others do the programming for us' form of com
puter escapism. As a result, they are Wcely to be forever restricted to software
packages they have little or no control over and wh.ich more or less determine
what tl1ey can and cannot do . Otl1ers, who perhaps should lrnow better, seem to
have been lulled into complacency by tl1e increased computing power offered by
PCs. They ask 'What is tl1e point of high-performance computing when witl1 a
bit of Fortran or Pascal or C programming I can do al! I want on my PC?'
Indeed, some otl1ers will tell you tliat 'what t11ey did in 1991 on a mainframe
tl1ey can now do on a PC', while some really clever folk can do it in Uni.1:: witl1
awk! This is all t:rue. The point is tl1at, sadly, tllis is a very negative and back
ward-looking perspective. What tl1ese people are doing today is more or less
what tl1ey first did, albeit witl1 considerably greater difficulty, five or ten or
twenty or more years ago, and tl1ey appear to tllink tl1at what was good for tl1em
when tl1ey did research is also good for you when you do your research. This is
not progress but regress! It is botl1 simultaneously very understandable and an
unfortunate neglect of tl1e immense potential tliat HPC systems have to offer.
The computational world of tl1e twenty-first century is really quite different
from previously, and tl1ere is far more to tl1e change tl1an a mere increase in
processor speeds. There cornes a moment in rime when t11e cumulative speed-up
has been so great as to spawn al! manner of new ways of doing science as well as
geography and social science.

1.2 HPC stimulates new research and creates new
research opportunities

Let's face it. The once rarefied frontier of computational geographical research
in ilie 1970s and 1980s (in common witl1 many otl1er sciences) is now a first
year PC laboratory practical. One of tl1e autl1ors can remember a centrograpllic
data retrieval program developed in the 1970s by tl1e Census Research U11it at
Durham U11iversity. It tl1en needed tl1e largest available ma.inframe to run it on
l lan grid-square census data. A later version is now used on first-year under
graduate geography computer practicals at Leeds, where it runs in a few seconds
on really old PCs. That is indeed progress, but it also begs tl1e question: wlliilier
now tl1e research frontier in computational geography? What is it tliat we can
now apply lligh-performance computers in geography to tl1at first-year under
graduates or masters students cannot do on tl1eir PC workstations? Certainly,
tl1e PC or U1lix workstation of today is broadly equivalent (or even exceeds) tl1e
performance of tl1e lligh-performance computers of the recent past. That is itself
a most amazing technological achievement. However, notlling remains station
ary. Today's high-performance computers provide many rimes more per
formance. The real million-dollar question is how do we exploit tl1ese
developments to advance useful computer applications in geography and GIS?

Wh)' parallel. processing is important 3

What new research agendas are now relevant? As computers become faster and
t11en much faster and tl1en much faster aga.in how do we go about doing really
useful geography using tliem tliat could not previously be done witl1out
t11em? And, what new areas of research can a high-performance computing
environment foster?

These questions are not easily answered, since by definition it involves new
applications tl1at previously do not exist because tl1ey were computationally
infeasible. Maybe it will be easier to tllink in terms of re-engineering legacy
applications to be based on better science, where 'better science' is related to
available computational speed. However, not ail HPC and parallel programming
need be fringing on tl1e limits of tl1e computationally impossible. Less prosaic
questions concern issues such as what GIS data su·uctures are relevant if tl1e
entire GIS database is held in memory, not on disk? Basically, you no longer
need relational databases or recursive hierarchical data su·uctures, because tl1ey
are hard to parallelise . Tllis is good news for tl1e simple-minded! The multi
dimensional data cube mode! is malcing a comeback because it is easily paral
lelised! Similarly, what new geoprocessing technologies that were historically
impossible due to computer power consu·a.ints can now be developed? An
alternative fuzzy-logic-based GIS technology immediately springs to mind as
one possibilit:y, but there are surely many otl1ers .

GIS is commonly viewed as a PC-powered desktop technology and will
seemingly forever be resu·icted to it. However, tl1e growth of tl1e Internet creates
the prospect t11at tl1e PC merely becomes a gateway to disu"ibuted GIS, witl1 the
functionality and data being disu·ibuted over several or more sites (or proces
sors). It is u·ue that many simple GIS operations have no real need for HPC, but
relax tlie assumptions slightly and the situation soon changes. For example, con
ventional polygon overlay is fast but totally ignores spatial error and uncertainty.
Ifyou add an error handler, tl1en t11e compute rimes increase by about 1000 or
so rimes. The GIS tools that exist today pre-date modern HPC, and the speed
ing-up in hardware over tlie last decade has mainly been used to expand tl1e
number of users of GIS dramatically rather tl1an expand the quality of tl1e GIS
science being employed by tl1e leading systems. Does it matter tliat modern
GIS is as simple-minded as it was a decade or more ago? Once tl1ere was no other
option, but now tl1ere is! The question is, tl1erefore, how much longer before
the potential and possibilities are translated into practice. One imagines tliat tl1e
u·anslation of geograpllical information systems into geograpllical information
science may help to foster tllis revision of tl1e fondamental GIS toollcit. If it does,
tl1en tl1e parallel processors of tl1e fumre desktop systems will be the vellicles for
its dissemination, but tl1e development will have to be doue on today's HPC.

1.3 Why parallel processi..ng is important

The basic proposition is very simple . Our view is that geographers urgently need
to learn some new programming slcills if they are to grasp the new opportmlities
for creating new ways of doing computer-based research in geography to meet

4 High-performance computing: why bother with it?

the increasingly urgent needs of the contemporary vvorld for geographical analy
sis, modelling and understanding; and if they want to make far greater use of the
rapidly ail-engulfing geoinformation swamp. Sorry, but tlli.s is unavoidable, and
at least some geographers need to grasp tl1e nettle, although 'nettle' is tl1e
wrong word here, as parallel programnli.ng can easily become a source of almost
endless delight, fun and inspiration. After ail, t11e ultimate computer system is
t11e 'supercomputer', and parailel programnli.ng is what tl1ese super maclli.nes
now feed on, but it is also what tl1e desktop systems of tl1e future will increas
ingly be based upon. One strategy is very straightforward. You seek to emulate
tl1e parallel desktop systems of tomorrow using tl1e HPC of today as tl1e devel
opment environment. Otl1ers are more complex. For example, you can use tl1e
HPC of today to find brute force solutions to problems tl1at you later hope to

solve using far smarter metl1ods; tl1e HPC results provide a benchmark.
Alternatively, you go for broke! You boldly create new HPC applications far
beyond what current HPC can deliver and tl1en scale up tl1e problem sizes as
HPC hardware speeds up over a decade or more.

Maybe tl1ere is anotl1er perspective t11at nli.ght be useful to evoke at tlli.s p0Îl1t.
Learnli1g how to program tl1e world's fastest, biggest, most expensive computer
systems is like driving a high-performance car. Your 'car' goes fast already, but
you still want it to go faster and faster and faster. However, fast cars are already
nearly at t11eir maximum practical limits (and way outside what is legal). By com
parison, lli.gh-performance computers are still at tl1e Ford Model T stage. Just
tlli.nk of ail t11at pent-up computation power tl1at is going to appear during tl1e
next decade. The challenge, however, is not just a 'self-indulgent mega
computer geocyberpower trip' but to do sometlli.ng geograplli.cally useful and

wortl1wlli.le witl1 it.
Yes, we are being teclu1ology-led, but tlli.s is not a new phenomenon in t11e

maclli.ne age . Indeed, GIS has tl1roughout its lli.story been teclrnology-led. As
hardware became faster and cheaper so GIS diffused outwards from tl1e research
centres. As display screen resolutions improved so did too did tl1e map displays.
As disks became bigger and cheaper soit became feasible to build and ma11ipu
late Îl1Creasli1g large spatial databases. GIS has always been technology-led, but
tl1en so too has much of modern science. As tl1e computationally impossible
becomes possible and affordable so uses are developed for it. The hardware tools
exist and tl1e compilers exist, but what it now needs are t11e big new ideas and
new generations of GIS-litera.te computerised geographers able to make tl1e
most of it al!. So here in tlli.s book we plan to expia.in what HPC is all about and
hope tl1at it will excite otl1ers witl1 a similar or even greater levels of entlmsiasm

tl1an it has already given us.
It is s1U"ely very obvions, after more tl1an a few moments tl10ught, tl1at paral

lel-programmli1g slcills are going to be needed if we are to corne to tenns witl1
using more of tl1e li1formation sloslli.ng around in a data-rich GIS world. Parallel
programming is not just for tl1e computer experts but is for ail who tlli.nk
(rightly or wrongly, and tlli.s judgement is really for lli.storians to malce) tl1at tlKy
can compute t11eir way out of at least some of t11e problems of doing geography

Parall.el computing is tl1e future of HPC 5

and, maybe sometimes, help tl1e modern world to solve a few more of its prob
lems. Parailel programmillg is not just for computer-obsessed nerds; it could be,
but tl1e most beneficial applications will be developed by ordll1ary, normal folk
who see it as a tool for doing GIS, spatial analysis and geography differently
from what has come to characterise tl1e previous (and current) computationally
shy age. It is really little more tl1an tl1e next stage in computer evolution; viz.
more data needs bigger memory spaces and faster number crunclli.ng, wlli.ch in
turn stimulates tl1e capture of more data, wlli.ch needs faster and bigger com
puters, etc. Tlli.s process has been going on for a long rime, but it is only recently
tllat everytlli.ng has speeded up witl1 an exponential grovvth Îl1 most aspects. As
a result, a vast gap has developed between what computers were once used for
in geography and what tl1ey cmùd now be used to do. It is no longer a case of
more of tl1e same as before only faster. New skills are needed to survive in tlli.s
emergli1g IT world. Para.Ile! programming is one of tl1em. The ili.ce tl1li1g here is
that it comes witl1 a guarantee tl1at if tlli.s does not work out as you expected and
your geograplli.cal research or acadenli.c career crashes in flames, tl1en fear not,
tllese parallel-processing slcills will probably get you a job in many otl1er disci
plines where tl1ey may be more instantly appreciated. If, on tl1e otl1er hand, you
are able to malce good geograplli.cal use of tl1ese slcills tl1en you may well have
gained a massive competitive edge on many otl1ers who do not, or who have not
yet joined tl1e teraflop club.

The future of geography (and most otl1er disciplines too) is now unde11i.ably
IT-dominated. Its tools, its data, its information, its tl1eory, its models, its con
cepts, etc. will ail eventuaily be recast into a form suitable for tl1e machine age .
So why not fight t11e problems caused by IT witl1 tools tl1at exploit IT1 Why not
aspire to ride out t11e IT wave by using IT (ratl1er tl1ai1 resisting it or pretending
it does not exist) ai1d see where it talces you1 It may not make you massively rich,
but tlli.nk of all tl1e fun you can have doli1g tlli.ngs never done before. It is poten
tiaily exciting heady stuff, but it is also hai·d work. There ai·e mai1y battles
yet to be fought, let alone won, against tl1e anti-quai1tification, anti-GIS, anti
computer, ai1ti-spatial and everytllli1g-needs-deconstructing, I-hate-computing
Luddites who ai·e slowly donli.nating mai1y social sciences. These people do little
t11at is usefully consu·uctive or applied, ai1d many are scai·ed of t11eir own reflec
tions. If you ai·e not one of tl1em, or even if you are , tl1en consider reslcilling.
Parailel processing, parallel programmli1g ai1d lli.gh-performaiKe computing
(HPC) are future essential core slcills wlli.ch at least some geographers ai1d social
scientists will need to possess if tl1ese disciplines ai·e to continue to prosper. It is
li·onic tl1at tl1e knockers and critics also need tlli.s so tl1at tl1ey too cai1 continue
to tlu·ive! By beconli.ng a HPC geographer you are, it seems, doing mai1y otl1ers
a good turn.

1.4 Parallel computing is the future of HPC

Parallel computing has become tl1e key component of HPC during tl1e l 990s,
ai1d tlli.s looks set to continue into t11e future . If you ai·e to exploit HPC

6 High-performance computing: wh)' bother with it?

teclmology usefully, you need a good understanding of how to write portable
parailel programs in a general way and also to be convinced that the effort is
going to be worth while . A colleague from Lancaster University recently, quite
unwittingly, summarised the choices most geographers traditionally faced. You
either persuade a local computer scientist to write the parallel programs for you
(because it is assumed to be too difficult for a mere geographer) or as a last
resort you discover how to do it yourself. We think that geographers should
learn to do it themselves as a first resort. Parallel programming in Fortran or C
or Java should be a basic part of future social science research u-aining. Anyone
with a modicum of programming skill or computer interest will not find it diffi
nùt. The veneer of apparent computer science complexity is in reality ext:remely
thin and, as this book seeks to demonstrate, is easily removed.

However, be prepared for a shock. In a serial PC or workstation environment,
a program written in standard C or Fortran will probably work without much or
any significant change on almost any computer anywhere in the world. A pro
gram written in Java vvill run anywhere where there is a Java virtual machine.
However, the same program will probably not work well or at ail on a parallel
computer or even on a more modest multi-processor system. As Geist (1996)
points out, 'in general compilers cannot create an efficient parallel programming
from an existing serial program. Even if such compilers existed, programmers
would still need to have knowledge about parailel programming because the
most popular method of p<u-ailel computing is by using a net:work of work
stations as a virtual parallel supercomputer' p. vii, Geist, Foreword to Baker and
Smith (1996). All this smmds hard, and it is not helped by a plethora of parallel
programming texts that litter the shelves of the bookshops and tend to
complicate rather than simply do the business.

Consider just one example selected almost at random. Lewis and El-Rewini
(1992: p. 57) write: 'A parallel processor is a computer consisting oftwo or more
processing units connected via some interconnection network. There are two
major features of a parailel processor: (1) the processing units themselves, and
(2) the interc01mection net:work that ries together the collection of processors.
We argue that the interconnection network is the more important of the t:wo,
and so concentrate on the topolog_y of networks before examining specific com
mercial parallel processors' (our emphasis). But, do geographers (or indeed
many of the end-users ofHPC) really need to know any or much about tllis? We
think not and argue that geographers can greatly simplif)r t11e task by dispensing
witl1 nearly ail such irrelevant technical and architectural details. They are of
interest only to computer scientists, computer builders , computer engineers and
historians of palaeo-computing. Geographers, social scientists, indeed most of
t11e end-users ofHPC, merely need to lrnow enough to be able to use t11e tech
nology effectively and efficiently, not how to build or design new machines or
understand how extinct machines once worked. We reaily do not need a whole
lot of unnecessary details from computer science and computer engineering.
Why not simply talœ it for granted and concentrate on using t11e technology?
After all, no one expects geographers to k.now how a Pentium Il or Merced chip

Aims and objectives 7

works before using a .PC or workstation, so why are tl1e intricacies of parailel
proces.sor and co111:ect10n network topology of any great interest to geographers
or soC1al sC1entists mterested in learning tl1e principles of parallel programming?
Geographers should be viewing parallel computi.ng as a tool tl1at can be used on
their problems; t11ere is absolutely no need to know more than about 0.01 per
cent of t11e technical details of how tl1e hardware actually works!

1.5 Aims and objectives

So most parallel programming books disagree witl1 a simple non-computer sci
ence approach and end up providing masses of obscure technical details about
hardware tl1at is often extinct by tl1e rime tl1e book is published and is at best of
only limited historical interest. At tl1e same rime, tl1e secrets of how to do paral
lel progran:1111ng often remain obscure, tl1ey are not adequately described, or are
presented 111 a way tl1at even experienced programmers find hard to follow.
Hopefully, tllis book will do better tl1an t11is as it seeks to offer a basic inri·oduc
tion to high-performance computing and tl1e programming of parallel com
puters. The hope is tl1at it is possible to acllieve reasonable levels of
computational efficiency via a book written in a non-technical, plain English
maimer tl1at geographers and otl1er social scientists witl1 only a basic or rusty
lrnowledge of computing should be able to follow.

The bo~k aims to concentrate on telling you sometlling of tl1e basic tlùngs
tl1at you w1ll need to lrnow, ignoring as much as possible of that wlùch is prob
ably ll'relevant. We attempt to do t11is (1) by offering demonsti·ations of what
cai1 be. d~ne with HPC in geography (botl1 to raise awai·eness and foster your
potential 111terest levels) and (2) by working t11rough geograplùcal examples of
how to convert serial code into efficient parallel code. The aim is not to provide
a programmer's manual or to teach you any geography; ratl1er, it seeks to expose
tl1e practical thought processes mat occur when parallelising serial programs or
when attempting to write parailel codes from scratch. The whole secret in t11e
effective use. of parall~l HPC is developing tl1e ability to rework or re-express or
redes1gn senal code 111 a parallel way that matches what current hai·dware can
use~1ll~ exploi~. It is essentially a design task and not often a ri·anslation process,
and 1t 1s for tl11s reason tl1at automatic parallelisers will always be limited in what
t11ey cai1 deliver on many problems. Often it is tl1e algoritl1111 that t11e code
represents wlùch needs to be pai·allelised.
. The book by Healey et al. (1998) is currently tl1e only otl1er parailel process
mg book relevant to GIS. lt extends tl1e range of applications provided here but
is mtended for a more advanced readership. They write, 't11e book is aimed at a
pos.tgraduate or professional software development audience, rat11er t11ai1 being
an m~·oductory text' (p. 6). It does not really explain how to program parailel
rnachmes ratl1er tl1an present descriptions of GIS applications mainly run on
now defi.~nct systems. Instead, tlùs book offers a range of examples and simple
case s':11dies based on geographical examples from tl1e world of GIS ai1d spatial
ai1alys1s (not mati"ix algebra or otl1er applications that geographers wmùd find

8 High-peiformance computing: wh)' bother with it?

obscure and irrelevant). It is really hard to understand parallel programming
using example applications that are themselves not readily understood or not
even remotely applicable to anything that geographers may ever wish to do or
use. However, we have not attempted to write a programming book full of the
micro-details of this or that language for HPC. Rather, the purpose is to offer a
more general and abstract view that gives an inu-oduction to the concepts and
principles of what is involved, glimpses of how to do it, details of the design
processes that are usefi.ù, and examples of application that seek to demonstrate
that the effort is, or can be, very worth while. It is particularly usefi.ù to t:ry to
demystify the programming process by explaining how case studies have been
tackled using a non-technical language. It is useful for teaching purposes to
describe what is happening and the reasons for many of the program design
decisions . It is also important to explain how to doit and why it was done in the
way it was. The focus on concepts and principles is deliberate, because these are
likely to be far more enduring and portable than any code written for a specific
species of HPC at a particular moment in time .

1.6 Fostering a computational culture

A st:rongly distinctive and attractive feature about many potential geographical
and social science applications ofHPC concerns their applied and seemingly rel
evant nature to the problems of the world. The problem is that non-geographers
and non-social scientists seem to see these su-engths far more clearly than ge
ographers do! There are even some signs of envy along the lines of 'you geogra
phers are sitting on a tremendous wealth of very useful applications that have
the outstanding advantage ofbeing understandable by Joe Public and ofapplied
relevancy' . Yet ironically politicians seem to find it easier to spend millions
supporting obscure theoretical science problems than to fond social science
applications that may require them to react to the results. Nevertheless, we
should be aware of and willing to argue the strengths of practical usefi.ùness that
may come from using HPC in geography and GIS.

Better computer models of the economy, disease analysis tools and location
optimisation methods have the outstanding attractions of being usefi.ù as well
as contributing to lmovvledge. They may save lives, improve quality of life and
reduce waste. By contrast, many areas of computational science just do not
stand up to any sort of detailed comparison, with the possible exception of
weather forecasting! So why then do geographers and social science downplay
the need for computation, preferring instead poor-quality, low-resolution
results produced on PC platforms? Why are they not seeking improved solu
tions by throwing more computing power at their problems? Why do we pre
tend that 25-year-old methods, born at a time when computers were slow and
computing time massively expensive, are still relevant? Of course it is possible
to muddle through without HPC. You can even do some computational
physics on a PC, but no one pretends that this is ideal. It is almost as if many
of the models and computer applications in geography and the social sciences

Fostering a computational culture 9

became fossilised many years ago and (with a few exceptions) remain stuck in a
pre-HPC era.

Yet almost everyv.rhere you look there are HPC applications waiting in the
wings, fro zen in a Narnia-like state ready for spring! Micro-simulation models
are another example that are just crying out for a HPC-powered redevelopment.
In the UK, the absence of social science research initiatives in HPC has not
helped. Yet where are the models of human systems? It is interesting that com
puter scientists are more interested in these and related applications than many
social scientists! There is something very amiss here!

Historically, the great problem with vector supercomputers from a geograph
ical perspective is that hardware speeds and memory restrictions impacted more
severely on geographical applications, which typically involve very large amounts
of data, than on many problems in physics and chemist:ry. In short, the vector
supercomputers were neither big enough nor fast enough. This is not arrogance,
just a statement of fact. Most supercomputers were and man y still are optimised
for 'number cnmching' without much data and not 'number munching' with
masses of data. So it is only recently tl1at HPC has started to become big enough
to interest geographers, and even tl1en tl1e computational performance is prob
ably too limited to meet potential people systems modelling needs and also
some GIS needs . Weil tlut is what we believe, and we are sticking to tlus story
line despite tl1e raised eyebrows such daims often generate among tl1e HPC
cognoscenti. However, the emergence of teraflop machines dramatically changes
tlus si tuation.

It is argued tlut many areas within geography and also many GIS appli
cations will benefit from tl1e adoption of an HPC-based geocomputational
paradigm; see Langley et al. (1998), Couchelis (1998) or Openshaw and
Abrahart (1999). However, being realistic, tl1ere is unlikely to be a sudden
HPC revolution that will suddenly sweep ail before it. Instead, in tl1ose
areas tl1at need it and where a computational paradigm may be helpful, tl1en
tl1ere is a way forward but probably only if tl1ose who are interested start to
learn basic parallel-programming skills. If the current HPC maclunes are too
slow and access is resu"icted tl1en be patient: soon tl1ere will be much faster
ones. But - and it is a really big BUT (see Figure 1.1) - you need to start
developing tl1e new approaches now and tl1en safeguard your software
invesu11ent by using standard portable programming languages and conform
ing to whatever international standards exist. Fortunately, you do not need
access to tl1e world's fastest HPC to begin tl1e research. Witl1 modern
parallel-programming tools you can now write portable, scaleable codes tlut
can be developed and proved to work on low-end HPC platforms (multi
processor workstations, work farms based on U11ix workstations and even
PCs running NT) before moving on to more powerful multi-processor
leading-edge HPC platforrns. The essential challenge is to discover how to
use HPC to extend and expand our abilities to mode! and analyse ail types
of geograplucal systems and not merely those wluch are already comput
erised. It would be a dreadful waste if ail tl1ey were used for was to make

10 High-performance computing: why bother with it?

BUT
Figiwe 1.1 A big BUT. Source: Openshaw (1991 , 1992, 1993, 1994, 1995, 1996,

1997, 1998, 1999, etc.) (yes, it's a joke that people from Leeds and else
where may appreciate!)

old legacy tools run faster, resulting in a lcind of HPC-based revival of old
fashioned quantitative geography.

The opportunities are far broader than any backward-loolcing or historical
view would suggest and offer a potential far beyond what many old quantitative
geographers may once have only ever dreamt of or read in sci-fi books. Malce no
mistake: old-fashioned quantitative geography was essentially theory rather than
computationally powered. The vision of vast number crunching to explore
unimaginably complex geographical data spaces for geographical patterns to dis
cover new concepts and build new models is not that of traditional quantitative
geography or indeed of contemporary GIS. However, it is this vision that is now
becoming more appropriate. ln some areas, almost instant benefits can be
gained, for example by switching to computationally intensive statistical meth
ods to reduce reliance on untenable assumptions or to discover new information
about the behaviour of existing models. In other areas, entirely new geocompu
tational applications may be expected to emerge, albeit far more slowly. As HPC
continues to develop it is likely that many subjects, not just geography, will have
to undergo major changes in how they operate . The combination of large
amounts of data due to GIS, the availabilit:y of new AI tools and other types of
computing-intensive analysis and modelling technologies, the increasing access
ibility of HPC hardware, and emerging new needs for using geographical
information ail look set to create a new style of computational geography that in
the longer term may well revolutionise many aspects of the subject by creating
new ways of doing nearly all lcinds of geography. The present is a very exciting
rime for HPC-minded geographers; it is also a rime when many new significant
developments are Wcely to occur. Parallel programming for geographers is
almost certainly one of them.

1. 7 Plan of the book

Our target audience is geographers interested in computing, spatial analysis and
GIS. However, we believe that much of the content is relevant to the other
social sciences and also to other areas of science where HPC is already more
firmly entrenched. There are no strong prerequisities. Part of the content is
about more general aspects (JJiz. illustrative applications in geography, descrip
tions of how parallel processors operate and how they can be programmed),

Plan of the book 11

which is presented in plain English stripped of much of the computer science
jargon. Probably t:wo-thirds of the book talks about the art of programming
in a parallel way via a small number of case studies. The examples mal<e use of
Forll"<ll1 code, but tllis is no real restriction, because no attempt is made to teach
any Fortran and tl1e examples are sufficiently simple for anyone witl1 more tl1ai1
a snatch of programming knowledge to understai1d tl1em. Again tl1e focus is on
a simple non-tech1lical (as far as possible) description and explanation of tl1e
t]1ought processes involved in developing efficient parallel code. If you wish to
develop a high level of practical parallel-programing ability, tl1en tl1is book pro
vides a justification, a context and case studies witllin which you cai1 practise the
teclmical slcills obtained from lai1guage-specific maimals .

Tllis book sets about trying to meet tl1ese objectives as follows. Chapter 2
provides a general survey of HPC applications in geography and GIS, focusing
on tl1e barriers to greater usage and emphasising tl1e potential. A number of case
studies are briefly reviewed. Chapter 3 examines tl1e principles and tl1e concepts
tl1at ai·e involved in HPC and parallel processing iliat ai·e judged relevant for a
non-computer science audience. Chapter 4 tal<es a doser look at different hard
ware types ai1d programming models that allow us to make good use of HPC.
Again tl1ere is a minimum of complexity. These two chapters set tl1e scene
for developing a working knowledge of tl1e different HPC programming
approaches in Chapter 5 (vector parallel programming), Chapter 6 (data-pai·allel
and shai·ed-memory programnling), and Chapter 7 (simple message passing).
The slcills learned in tl1ese chapters are tl1en used to create a parallel geograplli
cal ai1alysis machine as a case study in Chapter 8. Chapter 9 offers some sage
debugging ai1d performaI1ce llints. Chapter 10 is mainly concerned with revision
by loolcing at an aI1otl1er case study based on parallel code used to benchmai·k
HPC. Finally, in Chapter 11 tl1ere ai·e some suggestions about possible future

research agendas .

2 High-performance computing
applications in geography
and GIS

This chapter seeks to add substance to the more general arguments raised in
Chapter 1. It offers a review of HPC in a geographical context, identifies those
types of application Wcely to benefit most and then reviews some of the work
that bas used HPC. It sets the scene for subsequent chapters concerned with the
practicalities of doing HPC. It is important to understand the new oppornm.ities
and the potential of HPC as a justification for learn.ing the relevant skills. The
hope is that this top-down look will help to stiffen your resolve and boost your
enthusiasm levels.

2.1 Introduction

There is considerable excitement in many t:raditional sciences about develop
ments in h.igh-performance computing (HPC). Computation is now regarded as
a scientific tool of equal importance to theory and experimentation as super
computers have stimulated new ways of doing science; see Hill.is (1992) . These
developments are of enduring and far-reach.ing practical sign.ificance . Yet in
geography and many of the social sciences, few seem.ingly even know what the
words mean, even though these HPC developments are important and in
creasingly essential here too. As Openshaw (1995a) bas repeatedly argued, a
supercomputing-based paradigm is potentially highly relevant to many areas of
human geography, with possible applications that go far beyond the very narrow
h.istorical domain of quantitative geography and geographical information sys
tems. It provides an enabling computing environment with.in which many new
approaches can and will be developed. Moreover, the same paradigm is also rel
evant to many other social sciences and humanities, pa.rticularly those with exist
ing or potential or as yet tmdiscovered large-scale computational problems. New
HPC-powered developments using artificial intelligence (AI) and computational
intelligence (CI) based technologies are now rapidly expanding the potential for
computer applications into many new areas of geography and qualitative social
science; see Openshaw and Openshaw (1997) for a review of and introduction
to AI in geography. Many of these tools need HPC to power them . However,
there are still significant impediments, and outside traditional scientific disci
plines HPC activities have historically been at a low level. Indeed, the only other

Introduction 13

book that discusses HPC and GIS is that by ~Ieale~ e~ al. \1998) . It i~ useful to
begin this book, which is dedicated to changmg tlus s1Ulatlon, by havmg a gen-

·al look at why HPC should have been so neglected and by discussing some of
er, 1. . . l d
the potential benefits and opportunities for HPC app !Cations 111 geograp lY an

GIS in tl1e immediate future.
An obvions starting point is to understa.nd what tl1e words mean. The tenns

lùgh-performance computing, parallel processÎl~g and supe1:computing are often
used interchangeably, wlùch is more tl1an a httle confusmg. However, tl1e.re
seems to be an increasing preference for tl1e abbreviated HPC because of 1ts
broader and generic mea.ning, whereas supercomputing has historically been
linked to one particular type of HPC (tl1e vector processor). A lugh
performance computer (also termed HPC) is usually defi.ned as compute1: hard
ware based on vector or multi processor parallel computers (or some mu:n1re)
tlrnt offer at least a two orders of mag1ùtude increase in computing power tlrnn
is available from a top-end workstation. Tlùs defuùtion is perpetually cha.nging
in absolute terms, as current persona! computers (PCs) would almost certait~y
have been called HPCs less tl1an a decade ago. In fact, tl1e performance gam
from using leading-edge HPC hardware is now more Wcely to be at least two .or
tlu·ee orders of mag1ùmde as highly parallel processors talce over from tlle earlier
vector supercomputers. This whole area is now developing at a rapid rate, witl1
most new current HPCs having only a two- to tlu·ee-year l.ife. The driving force
is tl1e speeding-up of processor clùps due to increasing dock speeds and tl1e
rapid obsolescence of slower chips. As a result, tl1e mainframe era of tl1e l 960s
to tl1e l 980s has been superseded but not yet entirely replaced by what may be
termed client server and distributed workstation-based computing. At tl1e HPC
end of tl1e specu·um there have been similarly dramatic developments. The early
1990s saw tlle emergence of a parallel-computer-based approach to supercom
puting. The idea of parallel processing is not new. However, botl1 tl1e hardware
and software systems have only recently reached a degree of maturity tlrnt bas
made tl1em into a practical proposition for HPC and have fostered a belief tl1at
tlle fumre lies in tllis direction until maybe quann1m computers become a

practical reality.
It is Wcely tlrnt funu-e lùstorians will recog1ùse tlrnt tl1e computing world

underwent a major technological change during tl1e early 1990s and tl1at by
tl1e mid-1990s it was fümly in a new era of lùghly parallel supercomputing. A
lùghly or massively parallel processor (MPP) is a computing system with mul
tiple CPUs (or processors) tl1at can work concurrently on a single task if tl1e
user is clever enough to program tl1em to exploit the parallelism in lùs or her
algorithm. Theoretically spealcing, a parallel maclline witl1 100 processors
should be able to perform 100 rimes as much work as a single processor,
provided tl1e task is suitable for parallel computation. However, it was only
recently tl1at tl1e technology needed to assist tlùs prospect had matured suffi
ciently to become tl1e dominant HPC maclline arcllitecntre. Parallel hardware
is destined to u·iumph over single-processor vector supercomputers because
of tl1e inherent speed limitations of individual processors. Maclùnes capable of

14 High-performance computing applications in geography

sustained teraflop performances are expected by AD 2000, with a further ten
to 100-fold increase during the following decade. The US ASCI (accelerated
supercomputing initiative) is the current driving force as attempts are made to
simulate nuclear explosions using HPC. Indeed, already in 1998 IBM
announced that its Pacifie Blue parallel machine had reached 3.5 teraflops, a
speed equivalent to about 15,000 400 MHz PCs (in 1998, tlus was tl1e
fastest PC clup speed). These developments will soon dramatically increase
t11e performance and sizes of HPC hardware available to many scientists and
geographers - if t11ey want to use it. Indeed, it is possible that many current
computing-intensive problems in science will not be sufficiently computing
intensive to utilise tl1ese new systems fully. Maybe t11ere are geograplucal and
social science applications currently computationally infeasible that will soon
become a practical proposition. A teraflop is 1 nuliion million floating-point
calculations per second (a single arithmetic addition counts as one floating
point calculation).

It is tl1e planned rapid speeding-up in HPC hardware tl1at malces t11e notion
of a supercomputer-based geography an increasingly viable proposition. It is
inevitable tliat sooner or later tl1ese hardware developments will create major
new research opportmuties pertaining to tl1e use of 11.igh-performance comput
ers in geography and also in many of ilie social sciences. The HPC hardware
exists; the challenge now is to find relevant and useful applications tliat really
need it and t11at are sufficiently important to justify tl1e cost. Sorne critics wili
argue tliat tlus is computation for computation's salce, iliat computer speeds
are driving t11e research and iliat tl1is is tl1e opposite of what should be hap
pening. The response is simply that currently much of geography and GIS is
actually based on computation-mirumising technologies and tliat tlus bas
irwolved a large number of simplifying assumptions. Tlus made sense when
t11ere was no alternative but much Jess so now tl1at tlie restrictions on compu
tation have been dramatically rela,\'.ed. Many new approaches to old problems
and new approaches to previously non-computable problems are now possible
or are rapidly about to become possible. Tlus is important. HPC is not just
doing more of t11e same faster but also opens up many new applications for
computer-based approaches tliat previously simply did not exist. It is usefu1,
t11erefore, to t:ry to 'kick-start' tl1e process of change by emphasising, for a
wlule at least, ilie importance of computation and tl1en challenge ot11ers to
come up wit11 ilie geo-parts! Geography bas always been a tech11.ique-, para
digm- and plulosophy-driven subject, and typically tl1e more mature concepts
have appeared afterwards. So why not here too?

An immediate and principal tecluucal obstacle to computational geography on
parallel machines is t11e need for a major change in programmir1g technology.
Parallelising old serial code is seldom a trivial task unless tl1e code is already ir1 an
implicit parallel form . Thinking in parallel is important but bard, as tl1ere is usu
ally much more to parallel programming tl1an putting serial code tl1rough an
automatic parallelising compiler. Often it involves an entirely new way of tlunk
ing about problems and how to solve tl1em, requiring brand new algoritlm1s and

Parall el programming 15

a certairi amount of bard work. Maybe it is a legacy of many decades of serial
tlùnking tliat is t11e hardest self-imposed barrier to overcome. However, bard as

it may appear, now is t11e ideal moment to try.

2.2 Parallel programming

The good news is tliat tl1ere is an emerging consensus t11at t11e long-tenu fi.'.uu-e
(i.e. next twenty years) of HPC looks set to become iricreasingly and exclus1vely
based on large parallel machine arclutectllres. Parallel HPC has looked about to
triumph twice before (nùd-1980s and early 1990s), but each time a mixture of
false promises, over-exaggerated performance daims from t11e vendors, and
usability questions almost kilied it. Yet soon, in t11e early years of t11e new 1:ul
lennium, it is set to triumph at all levels ofworkstation arclutectllre and not JUSt
at tlie top end. In tl1e workstations and PCs oft11e fumre, multi-tasking (now a
common feature but called SMP) will have given way to true multi-processing.
The principal obstacle at present is t11e Jack of efficient PC software t11at will per
mit efficient multi-processor computing. One imagines t11at soon t11e problems
will be resolved here too. So at t11e top end parallel hardware is bound to
triumph ultimately over single-processor vector supercomputers because t11ere
is only a sir1gle processor. It is quite straightforward: faster single processors
merely mean an even faster multi-processor parallel machine built up from lots

of single processors.
' A parallel processor is a computing system witl1 multiple proces~ors_ or CPUs
ail working concurrently on t11e same problem. Distributed processmg 1s anot11er
term for t11e same class of maclune. A parallel macl1ir1e can have vir·tualiy any
number of processors, wluch can be orgaiused into a number of different hard
wai·e ai·clutectures linked by different network typologies. Ultimately, what really
distinguishes a massively parallel processor from a highly pai·allel processor is a
matter of semai1tics. The pronuse of parallel programming is essentially better
price/performai1ce, speed, scaleable performance, ai1 ability to handle bigger
problems and/or more computing-intensive ones tl1ai1 previously. Its principal
scientific attraction is t11e hope tliat computing rimes will decrease as t11e num
ber of processors and tl1e available memory increase, t11ereby providir1g a massive
increase in t11e available computational power at an affordable price. Whether
tl1is happens and over what number rai1ge of processors it applies depends .on
tl1e algoritl1m being nm, its computational complexity, t11e nature of t11e spec1fic
problem, tl1e ai·clùtectllre being used, tl1e skilis of t11e sofuvare developer ai1d

tl1e yeai·!
Currently little, if any, of tlus can be predicted, because parallelising serial

code is seldom a u·ivial task miless t11e code is already in a parallel form suitable
for tl1e hardware on wluch it is to be run. There is usually much more to pai·al
lel programming tlian merely rearranging a few critical 'do loops' . Often it
involves an entirely new way of tl1.i11l<ing about computing problems and how to
solve t11em. It is not just a means of mal<ing programs run faster but it also offers
a new way of prnblem solving t11at seeks to decompose complexity into sets of

16 High-pe1formance computing applications in geography

autonomous processing tasks, which occasionally interact. Some would daim
that this offers a whole new engineering design approach, with improved com
putational performance being a by-product. Others argue that parallelism is a
natural phenomenon that is widely evident in the world about us . It may well
simplif}r many modelling and analysis tasks once it is possible to escape from a
serial thinking mentality, which has been forced upon us by conventional single
processor mainframe computers, vector supercomputers, PCs and workstations.
An example would be the replacement of a sequentially structured micro
sim1ùation mode! (where each record in a database is a person who follows
dete~111inistic rules applied in a probabilistic manner) by one based on multiple
distnbuted agents, each representing a person, which is an autonomous
processing task nm in a parallel environment; see, for example, O'Hare and
Jennings (1996) .

However, defining generic applications that are by their natme suitable for
parallel processing is not sufficient justification to invest in the necessary parallel
programming effort. They also have to present a forrnidable computational chal
lenge. Some of the implications are considered in more detail in Section 2 .7.
What point is there in converting serial code that runs on a single-processor
workstation in 30 minutes to run on a parallel supercomputer with 256 pro
cessors in 10 seconds! Certainly, there is a software challenge, but the
computational intensity of the task may well not justify the effort involved. The
'la~top test' might be appropriate here. If the applications seem likely to be
eas!ly runable on a laptop PC in Jess than a week it is probably not worth while
to parallelise it. If the estimated run times look Wcely to require more than a few
months, then it begins to look far more interesting (but it still may run in 10
minutes if the code is optimised). If the estimated run times are greater than a
reasonable waiting period and the code has been tuned to deliver maximum
performance, then it is a potential HPC application.

An additional criterion is that the parallel application should offer some sig
nificant 'extra benefit' that cmùd not be realised without it. There should be
some evidence of either new science or better science or of better results or more
timely ones. The importance of application speed should not be overlooked.
Modern IT systems gather data in real time, so it would be very nice if the geo
graphical analysis and modelling tools were also able to produce results so
rapidly that they could be used in real time; see, for example, Xiong and Marble
(1996). However, real-time applications also require that these geographic tools
are highly automated and maybe even embedded within hardware systems so
that they can run continuously forever checking and monitoring databases for
the tmexpected. This sort of application is dearly a good use of HPC, and the
potential for the achievement of practical benefit should not be overlooked. The
danger is that it is very easy to become so enthused by the thrill of parallel com
puting that the unique benefits that this should be providing are overlooked.
Parallel processing is not an end in itself but a means to better problem solving,
more usefül tools and hopefülly better science, and tlüs is how it shmùd be
viewed in geography and tl1e social sciences.

Qeocomputation 17

The biggest gains will probably come from tl1ose applications tl1at were previ
ously impossible but which can now be solved and, as a result, offer sometlüng
judged to be 'wortl1 wlüle' knowing or l~aving; or ~y. being able to produce
better-quality solutions to old problems of 111terest. It 1s important, tl1erefo~·e, ~1
a relatively HPC-free subject such as geography, tlut geographers be selective 111
what t11ey seek to use tl1e new parallel-processing technology for. They shmùd
focus on tl1ose applications tlut most need tl1e exti·a power and memory and not
merely tl1ose wlüch are simplest to code and wlüch offer notlüng extl"a otl1er
than t!1e daim tl1at tl1ere is now a parallel version of code tlut never really
needed it or no longer needs or only needs it because of gross inefficiency in tl1e
original code or algorithm. There is anotl1er issue here in tl1at tl1e computational
challenge of tl1e applications also need to be scaleable so tlut tl1e benefits con
tinue even on madünes 100 or 1000 times faster tl1an tl1ose available at present.
This is not as difficult as may at first appear, because tl1e computational Joad
imposed by many geography applications reflects spatial data resolu~on. As
finer-resolution data become available, so tl1e computatlonal demands mcrease
at least linearly and often exponentially. There is anotl1er issue here . Parallel pro
grams tlut in 1999 need t!1e world's fastest and biggest madünes will witlün five
to ten years be running on desktop systems. If you wish to preserve your
research sofhvare invest111ent, tl1en program it in a portable parallel form.
Fortw1ately, as tlüs book later describes, tlüs can now be doue witl1out too
much difficulty and witl1 some good prospect of being successfi.ù.

2.3 Geocomputation

Anotl1er reason for believing tl1at HPC is a most sig1üficant technological devel
opment is tl1at once computers become sufficiently fast and offer sufficiently
large memories tl1en tl1ey provide new ways of approaching geography and also
many GIS applications based on what can only be termed a 'geocomputational
paradigm' . Geocomputation is a relatively new tenu invented (or first used in its
current form) in 1996. It is defined as tl1e adoption of a large-scale computa
tionally intensive approach to tl1e problems of doing research in ail areas of
geography, i.nduding many GIS applications, altl1ough tl1e principles are more
generally applicable to otl1er social and physical sciences; see Langley et al.
(1998), Openshaw and Abrahart (1999). It involves porting current computa
tionally intensive activities on to HPC platforms as well as tl1e development of
new computational tech1üques, algorithms and paradigms tlut can talce par
tic1ùar advantage of HPC hardware and tl1e increasing availability of spatial

information.
The driving factors are tlireefold: (1) developments in HPC stimulate tl1e

adoption of a computational paradigm to problem solving, analysis and model
ling supporting tl1e development of new metl1odologies; (2) tl1ere is a need to
create new ways of handling and using tl1e increasingly large amounts of spatial
and other information about tl1e world; and (3) tl1e increased availability of AI
tools and CI metl1ods (Bezdek, 1994), wlüch offer new tools that are readily

18 High-performance computing applications in geography

applicable to many areas of geography and social science. Geocomputation also
involves a fondamental change of research style with the replacement of com
putationally minimising technologies that reflect an era of hand calculation
short-cuts and ail the simplifications that tlùs has engendered by more robus~
and less assumption-dependent, computing-intensive technologies. In spatial
analysis, tl1e assumption of stationarity resulted in tl1e development of global
models tlrnt are study region dependent. As computer speeds increase so new
and more acceptable (from a geographical perspective) non-stationary modelling
tools are emerging; see, for example, Fotl1eringham et al. (1997). Similarly,
instead of relying on asymptotic distributions of statistical measures, Monte
Carlo alternatives can be applied tl1at are non-parametric and far more appropri
ate, albeit 1000 or more rimes more computationally expensive. There is also an
opportunity to convert tl1eoretical work into practical tools; for example, much
of the spatial optimisation tl1eory in Wilson et al. (1981) has not yet been
operationalised, partly due to lùstorical computational difficulties tlrnt no longer
exist, altl10ugh not many people yet realise it. For example, in creating tl1e
entropy-maximising spatial interaction mode! much depends on tl1e validity of
Stirling's approximation . An alternative computational approach could now be
used to test its applicabilit:y. Likewise, it becomes feasible botl1 to mode! systems
using HPC and to construct computational experiments designed to test the
acceptability of existing tl1eories: for example, central place theory or
lùerarclùcal decision malcing in human flow data.

Geocomputation also cornes with some grand ambitions about the potential
usefulness tlrnt may well result from tl1e fusion ofvirtually unlimited computing
power witl1 smart AI-based technologies, wlùch has tl1e potential to open up
entirely new perspectives on tl1e ways by wlùch we do geograplùcal research and,
indeed, social science. For instance, it is now possible to tlùnk about creating
large-scale computer-based experiments in which tl1e objects being modelled are
artificial people living out tl1eir lives in realistic computer-generated artificial
worlds (Dibble, 1996). HPC provides a laboratory witlùn wlùch many geo
graplùcal and social systems can be simulated, studied, analysed and modelled, if
only we are bold enough to try. People behaviour modelling is no longer an
impossible dream but a potentially practical reality.

Wlùle geocomputation may üùtially appear to be technique-domü1ated, it is
much more tlun just playing witl1 HPC for its own salce . HPC is not an execu
tive toy! The drivmg force is tl1e 'geo' part, with a distinctive focus on real-world
applications . It can be regarded as tl1e geograplùcal analysis and modelling
equivalent or follow-on from GIS . Now tlrnt GIS is here, the next revolution is
geocomputation some rime before 2010. Lilce GIS, it is essentially applied in
character, but tlùs emphasis should in no way dimüùsh tl1e need for solutions
tlrnt rest on a sound tl1eoretical understanding of how geograplùcal systems
really work. However, it has already been suggested tlrnt it is important not to
neglect tl1e prospect of using large-scale computer-based simulation to test,
verify and understand existing tl1eory. The Star Trek challenge is appropriate to
seek to create new computational tools tl1at are able to suggest or discover new

Raising HPC awareness 19

lmowledge and new theories from tl1e increasü1gly spatial-data-rich world in
which we live to complement tl1e knowledge we already possess or which can be
gained by other means. A whole new subject of geograplùcal data müùng and
Jcnowledge discovery still remaü1s to be developed. When it is developed, HPC
will be the critical ingredient.

It has already been emphasised tlrnt geocomputation is much more tlrnn just
using computers in geography. It is simultaneously a tool, a paradigm and a way
of thülicing about solvü1g problems tl1at is extremely relevant to tl1e future of
geography and many otl1er social disciplü1es. There is an argument tl1at geo
computation would have developed sooner if tl1e HPC technology had been
more advanced. Indeed, until as recently as 1995 it could reasonably be claimed
that neither the power nor the memory capacities of the leadü1g HPC maclùnes
were sufficient for many of problems of immediate geograplùcal interest. What
has changed since then is the maturity of parallel computing, the continued
speeding-up of microprocessors, a vast increase in memory and the availabilit:y
(after twenty years or so) of compilers tlrnt bring parallel computing witlùn tl1e
existing slcill domaü1 of computationally nùnded geographers. The standardisa
tion of lùgh performance Fortran (HPF) and also of the message-passing
ü1terface (MPI, MPI2) greatly eases tl1e task of using parallel supercomputers in
many areas of geograplùcal application as well as producü1g reasonably future
proof portable codes for tl1e foreseeable future.

2.4 Raising HPC awareness

The view is expressed tl1at in general terms tl1e HPC hardware infrasu·ucture
needed to support a major revolution in how geography can be performed is
now well developed and rapidly developing. The problem is tlrnt many geogra
phers have not yet either realised tlrnt tl1is is happe1ùng or understood tl1e
possible implications. In common witl1 many otl1er social sciences, most geogra
phers have neglected tl1e developments goü1g on in tl1e HPC world outside tl1eir
disciplines. Additionally, tl1ere is no established geo-supercomputing culture
tl1at can readily benefit from HPC in tl1e UK (in common witl1 tl1e USA and
EU). The absence of Social Science Research Council initiatives in HPC has not
helped. Two major reviews of supercomputing in tl1e UK (Catlow (1992) and
EPSRC (1995)) made no reference to any sig1ùficant social science or geo
graphical applications, and in tl1e last decade very few geographers have been
usü1g any of tl1e UK's available supercomputers. For example, in 1994, of tl1e
twenty-eight early users on tl1e UK's latest, biggest and fastest parallel super
computer (tl1e Cray T3D at Edinburgh) tl1ere was only one geographer. By
1997, tl1e total number of users had rocketed to over 1000 and tl1e number of
geographers to about tliree.

One reason may be tl1at currently tl1ere is not a single funded grand challenge
computational project anywhere in tl1e world tl1at is explicitly geograplùcal in
nature . A grand challenge project ü1 science is one which is identified by a
relevant discipline-specific peer group to be simultaneously of such critical

20 High-performance computing applications in geography

importance and significance that it has to be taclded and yet it presents such
severe computational problems that it is on the edge, or just beyond, what is
computationally feasible with available hardware . Such a project is characterised
by immense complexity, a strong link bet\'leen the quality of the science and
machine speed, and the use of computation as a substitute for experimentation
that would otherwise be too expensive or impossible. The argument is that
solving these very large and complex problems could produce enormous ben
efits. Examples are weather forecasting, modelling global climatic change, the
human genome, fluid turb1ùence, aerodynamics and quantum chromodynamics.
However, are there really no grand challenge problems of a computational
nature that are relevant to geography and the social sciences? Of course there
are! The problem is that geographers and social scientists have been very
backward at putting them forward.

Openshaw (1995a) argues that human systems modelling is of equivalent (if
not greater) importance and concern than any of the so-called grand challenge
projects in other areas of science. Is it right that scientists daim they can mode!
virtually ail of the major physical and environmental systems white ignoring al!
the principal human systems? Historically, this neglect is understandable because
of complexity, chaotic behaviour and non-linearities , Jack of data, slow compu
ters, absence of tools, etc. However, developments in IT, in the amount of data
being collected and the availability of HPC many thousands of times faster and
bigger than even a decade ago ail suggest that human systems modelling (is
becoming feasible and that the relevant research councils should seriously con
sider how to taclde this most important of subjects. The potential benefits in
terms of better scientific understanding, improved planning and commerce that
cmùd res1ùt from an ability to mode! the spatial behaviour of people would be
eqtùvalent or even greater to the payoff that HPC is supposedly providing in
many other areas of science; viz. from developing new drugs or new materials or
new discoveries in physics . After ail, people do matter and maybe it is time that
some (let alone more) of the world's HPC resources were devoted to smdying
the behaviour of people rather than atoms or car crashes or molecules!

2.4.1 Some reasons for the neglect

There are a number ofreasons for the current neglect ofHPC in geography and
the social sciences. Maybe by understanding them the best way of overcoming
them will become evident.

1 Until recently, tl1e available supercomputing hardware was probably not big
enough or fast enough to offer much tl1at was wortl1 while, given tl1e com
plexity of geographical modelling and analysis in its varions human and
physical settings. Indeed, it is noted tllat virtually ail current big science
computing applications of HPC started small and progressively increased in
size and complexity as computer hardware developed. In geography, it is
different and more difficult. The starting point required HPC to be above a

Raising HPC aiuareness 21

certain minimum size and speed threshold before it became a viable tech
nology. For example, tl1e geographical analysis machine of Openshaw et al.
(1987) required tl1e most extraordinary efforts to 'squeeze' it witllln tl1e
limits provided by tl1e tl1en largest available supercomputing hardware. Ten
years later, it runs qtùte easily on a workstation or a PC. It may still need a
HPC, but only in those special applications tllat require a high quality of
result reassurance.

2 In human geography, tl1e statistical and mathematical modelling revolutions
of tl1e 1960s and 1970s were followed in tl1e 1980s by a focus on soft
qualitative approaches which de-emphasised computation and devalued
programming and quantitative analysis skills by developing a style of doing
geographical research tllat was not computable at that time. There was also
a feeling tllat quantitative geography had failed to deliver much ofwhat was
pronùsed in tlle late 1960s. On tl1e otl1er hand, HPC now promises speeds
tens of millions of times greater tl1an tlùrty years ago. Many of the histori
cal criticisms are simply no long~r relevant, altl10ugh many of tl1e critics still
live in tlle past computing world of tl1e early 1970s and punch cards and
eitl1er totally fail to understand tl1e present because tl1ey have absolutely no
interest in it or tlùnk it is just tl1e same as tllat long since past.

3 There is a st:rong Jack of computing-intensive traditions to build on and few
examples of eitl1er applications or demonstrations of success. Tlùs is partly a
consequence of tl1e previous t\'IO comments and partly slowness on tl1e part
of geographers developing applications in response to HPC hardware devel
opments. Hopefully, tlùs book will help to change tlùs situation over tl1e
next decade or so.

4 Sorne social scientists have strong plùlosophical objections to logical posi
tivism, and tl1ese are widely but wrongly perceived to present insuperable
obstacles to tl1e adoption of a computational approach. Yet no lmowledge
able person wmùd view computational geography as a revival of what some
humai1 geographers consider to be a discredited normal science paradigm.
It could have tlùs effect, but it is really plùlosophy invai·iant. Computation
is just a tool, and how tl1e tool is used and what it is used for and tl1e con
text in which it is used depend on tl1e interests, skills and value systems of
tl1e user, wlùch ai·e tl1emselves grounded in contemporary society.

5 The apparent complexity of tl1e programming and tlle need for new skills tl1at
many geographers may perceive as a difficulty at a time when mai1y no longer
write computer programs of ai1y kind . Tlùs is a far more serions problem, at
least üùtially, at a time when few generally useft.ù HPC-oriented softwai·e
packages exist tl1at ai·e GIS- or geography-relevant. Once parallel softwai·e
starts to appear so (it is hoped) tl1e process will become self-reinforcing.

6 Sorne regai·d computing as a substitute for tl1ülicing. Tlùs is plai1liy incorrect
and grossly underestimates ai1d 1mdervalues tl1e immense conceptual and
physical effort involved ü1 writing useful software. To survive in tl1e IT age
of future 'tlùnlcing' without HPC somewhere in the background will soon
be ai1 untlllilicable fantasy!

22 High-performance computing applications in geography

7 There is no research agenda that emphasises computation as a paradigm for
doing geographical research and no supportive resource infrastructure in
place to help geographers to use HPC or get started with it. This will
change, but why wait when you can actually teach yourself most of the skills
in a relatively short period of rime? Hopefully tlus book will help. The doors
providing access to HPC are open if you care to look and know what to do
witl1 it.

It is even possible to attribute tl1e current disinterest to tl1e historical frustrations
of previous attempts at scientific geography and tl1e hardness of t11e task in tl1e
1970s of seeking to be scientific at a rime when botl1 tl1e computer hardware
and data availability were so woefully inadequate. It is argued tl1at tl1ese particu
lar restrictions no longer exist, altl1ough it should be appreciated that tl1ere may
well still be still sig11ificant problems due to widespread computer and HPC illit
eracy. There is a concern tllat tl1e neglect of HPC is potentially disasu·ous if it
continues for too long. Geography has always been a vibrant discipline able to
embrace new ideas and metl10dologies quickly. HPC is revolutio11ising many of
tl1e leading areas of science. More and more previously insoluble problems in
geography and GIS can now be given computational solutions. It is rime more
geographers woke up to what is now possible.

2.4.2 Teraflop computing is here, but what is that?

Openshaw (1994a) suggests tl1at by 1999 it is quite Wcely tllat HPC hardware
available for use by geographers will be 109 rimes faster (and bigger in memory)
tllan what was available during the quantitative revolution years of tl1e l 960s, 10

8

rimes faster t11an was available during t11e matl1ematical modelling revolution of
tl1e early 1970s, 106 rimes since tl1e GIS revolution oftl1e mid-1980s and at least
a furtl1er 102 rimes faster tllan when tl1is book was written. One problem appears
to be tl1at most geographers have failed to appreciate what tl1ese developments in
HPC mean. For instance, a CRAYT3D witl1 512 processors has a theoretical pealc
performance of 76.8 gigaflops, but what does that mean? A gigaflop is 1000 mil
lion floating-point operations per second, but aga.in what does it mean in a
geograplucal context? One way of answering tlus question is to create a
geography-based social science benchmark code tl1at can be run on t11e widest
possible range of computer hardware, ranging from PC to Unix workstations to
massively parallel maclunes. The widely used science benchmark codes measure
machine performance in terms of mau·ix algebra or problems in physics, but it is
not at all clear what relevance tlus has in a geograplucal context.

Openshaw and Schnudt (1997) have developed a social science benchmark
code based on tl1e spatial interaction model tllat can be run on virtually any serial
or parallel processor (see also Chapter 10). The benchmark is freely available
from tl1e World Wide Web. Table 2.1 provides a preliminary assessment of tl1e
performance of some 1997 HPC hardware in tenns of how many rimes faster it
runs tllan a humble 486 PC running at 66 MHz. These results are already out

Raising HPC aiuareness 23

Table 2.1 Relative performance of a selection of available HPC hardware on a social
science benchmark code in relation to a 486 PC.

Hardware

lvfassi1,efy parn!lel
Cray T3D

Parnllel
SGI Onyx
SGI Power Challenge

Vector supercomputer
VPX240
Cray J90

Worl1station
SGI Indy
HP9000
Stm Ultra 2

Persona! computer
Pentium 133 MHz

Nu1nber
of

processors

64
128
256
512

4
4

1
8

1
1
1

1

Problem size: m nnbers of origin and destinations

100
by

100

88

218
51

162
8

10
14
18

3

500
by

500

241

221
66

195
35

10
12
17

4

1000
by

1000

258
545

192
63

196
39

9
10
16

4

10,000
by

10,000

665
1335

np
np

np
np

np
np
np

np

25,000
by

25,000

1598

np
np

np
np

np
np
np

np

Note: Ben ch mark problern sizes greater th an 1000 by 1000 canno t be run on a 486 PC. The rimes
are estirnated using linear interpolation which provide.s a good statistical fit to a range of smaller-sized
problems.

of date. It is the general conclusions tl1at are more important. For smalt problem
sizes, the best performance is the SGI Onyx, followed by a vector supercom
puter (the Fujitsu VPX240) . However, once problem sizes increase to reflect
greater data availability tl1en soon tl1ere is no alternative to tl1e massively parallel
Cray T3D with speed gains of about 1335 rimes for a 10,000 by 10,000-zone
mau·ix (eq1ùvalent to tl1e best-resolution ward-level journey to work or migra
tion data for all of the UK from the 1991 census). Tlus run took 2 .4 seconds,
while tl1e even larger 25,000 by 25,000 benchmark required 13 seconds. Now
you might tlunk, 'Weil, tl1irteen seconds. Is tllat all' or 'Was it really worth the
effort?' Tlus view neglects tl1e fact t11at without an HPC the problem could not
be run at all due to the massive amounts of memory it needs. So it is important
to appreciate tllat HPC is not just about computing speed but also about mem
ory. The larger memory sizes required in tl1ese latter two runs reflect problems
that previously were impossible to compute. Now imagine tl1at your application
involves nuuung tlus 13-second model 1000 or 10 000 or 100 000 rimes for

' ' ' example in an investigation of data uncertainty propagation effects or in
bootstrapping tl1e model to estimate confidence intervals.

24 High-performance computing applications in geograph)'

One way of explaining what these changes in HPC hardware mean is to ask
how would you do geography if that PC on your desk was at least 5000 rimes
faster and had 5000 rimes more memory? Probably it soon will be! It is Wcely
that some geographers would not know what to do with the extra speed: some
would not want it, but some would spot major new possibilities for using it to
do geography differently. It is tlus type of researcher who will switch to geo
computation and will be best placed to benefit from tl1e next two or tl1ree
generations of HPC hardware. It is tl1ese people who will be tl1e 'stars' of tl1e
next generation of geographical computing.

2.4.3 Generic opportunities

The opportmuties are essentially fourfold:

1 to speed up existing computer-bound act:J.v1t:J.es so tl1at more extensive
tl1eory-related experimentation can be performed or to enable real-time
analysis of geoinformation;

2 to improve tl1e quality of results by using computing-intensive metl10ds to
reduce tl1e number of assumptions and remove short-cuts and simplifica
tions forced by computational const:J.·aints tl1at are no longer relevant;

3 to permit larger databases to be analysed and/or to obtain better results by
being able to process finer-resolution data and malce good use of very large
computer memory sizes, and finally;

4 to develop new approaches and new metl10ds based on computational tech
nologies to provide new analytical tools and models, botl1 of wluch are
going to be 11.ighly important in tl1e geoinformation-rich world of tl1e
future.

Ali of these are important, altl10ugh some are much more readily attainable tl1an
otl1ers. Indeed, in some applications there are almost instant benefits that can be
gained almost immediately witl1 a fairly small degree of effort. It is also import
ant to recognise tl1at HPC does not just offer two to four orders of mag11itude
increases in computing power above tl1at offered by a workstation or PC but it
also offers a similar improvement in memory sizes. These attractions are bath of
tl1e 'and' and tl1e 'or' variety. You can use tl1e computation power on problems
witl1 small memory needs and on problems with large memory needs; or just on
problems tl1at require vast memory but modest computation. The principal
att:J.·action of HPC was once its exclusively number-crunclung capabilities, but
now it can also offer vast memory spaces for data-hungry applications. Instead of
using disk-based database management software, you can store your gigabyte
(and soon terabyte) data bases in memory. There are potentially man y geo
graplucal applications tl1at could benefit from tlus, particularly those in
volving geograplucal data mining of massive databases and large-scale
computer modelling.

Raising HPC awareness 25

It is also important to becorne botl1 more adventurous and entrepreneurial.
Soft cornputing technologies designed for modelling complex qualitative sys
tems are now available for use in geography. Powerfi.ù natural-language search
algoritl1rns are just waiting for tl1eir first large-scale applications involving tl1e
analysis of text databases to exu·act geograplucal content and meaning and for
otl1er geographical purposes. At tl1e sarne time, advances in artificial intelligence
and computer vision provide whole new toolkits of geographically relevant
metl1ods tl1at are rapidly becoming feasible because of developments in HPC
(Openshaw, 1994e; Turton, 1997). Increasingly, it is becoming possible to tlunk
about doing almost ail kinds of geography, botl1 the quantitative and tl1e quali
tative, human and physical, quite differently in tl1e HPC era. Geographers need
to be aware of what is now possible even if tl1ey nught prefer to ignore it. Put
bluntly, the opportunity now exists to salve an increasing number of tl1e prob
lerns in geography by tlu·owing vast amounts of computational power at them.
Tlus works well in other sciences, so why not in tl1e social sciences, where tl1e
problems are even more challenging? lt is clearly an appropriate time to revisit
tl1em at last and reassess what can now be doue witl1 the latest technology lmder
tl1e guise of a new style of computational geography (Openshaw, 1994a). Again
it is emphasised that computational geography is much more than statistical
geography and GIS, because it is not necessarily statistical or matl1ematical or
GIS-oriented but is unashamedly computational. The cmrent HPC develop
ments challenge key areas of current wisdom and in tl1e longer term look set to
change fundamentally how geography will be doue in the twenty-first century.
The present is an ideal time to start developing major new geograplucal applica
tions tl1at can begin to exploit tl1e new opportunities by considering how to use
HPC hardware.

2.4.4 HPC and geography

Geography is certainly a late entrant into tl1e field of HPC, but it will not be tl1e
last as most social sciences lag even furtl1er bel1ind. However, tlus deficiency
needs to be remedied speedily if geography is not to fall too far behind other
hard sciences and if British geographers are going to main tain and develop tl1eir
expertise in this important internationally competitive area. In the UK, tl1ere
was in tl1e mid-1990s an extensive new technologies initiative (funded by JISC)
tl1at actively offered u·aining workshops, courses and help with currinùum
development, but geographers and tl1e social sciences who needed to become
involved failed to do so. HPC involves a leanung curve and a reskilling process
as well as a change of culture and perhaps of philosophical outlook. The com
putationally active researchers need to learn data parallel languages (e.g. high
performance Fort:J.·an) and adopt new programming tecl1!1.Îques such as message
passing tl1at are essential to tl1e fumre parallel-processing world (e.g. MPI).
However, there are some benefits in being a late entrant into tl1is new and
rapidly developing HPC area. They include:

26 High-performance compi.tting applications in geograph)'

1 it is possible to learn from the experience of other areas of science and fon1s
on those applications likely to benefit most;

2 the hardware and software environments are now so much better devel
oped, which should ease some of the problems;

3 there are few or no serial legacy HPC codes that have to be ported regard
less of how well they work;

4 many potential geographical applications that are map-related are naturally
parallel at a coarse level of granularit:y;

5 many geographical applications are of fairly low complexity from a compu
tational perspective and involve relatively small amounts of code (typically a
few thousand lines of Fortran), which should ease the algorithmic redesign,
rewriting and porting activities white also offering some hope of attaining
high levels of performance on parallel hardware; and

6 HPC as used in a geographical context is not that different from its use in
other sciences, malcing interdisciplinary lmowledge transfer attractive; for
example, the use of common algorithms (JJiz. CFD, simulated aru1ealing,
Monte Carlo methods) and a similarity of some problems (JJiz. zone design
and space tessellation around an aerofoil, or the similarities in spatial map
pattern recognition and robotic vision).

With a little effort, geographers can catch up and start to malce rapid progress in
this area . As tllis book shows, it is not tl1at difficult! Virtually anyone wit11 a
modicum of rusty programnung slcill could do it if tl1ey wished and could see
some real benefits being obtained.

2.5 HPC applications in geography and GIS

A key question is probably whetl1er or not t11e effort is likely to be wortl1 while
and what types of geographical application really do need HPC. It is important
not to mistakenly assume iliat tl1e current small number of visible geography
HPC users at national centres means tlrnt tl1ere are (1) no otl1ers or (2) no prob
lems iliat need HPC in geography. On t11e contrary, tl1ere are a vast number
of potential HPC-relevant applications and a large but not readily visible
communit:y of active HPC-powered geographers in ilie world. Maybe it is rime
tlrnt more stood up to be counted and considered HPC versions of tl1eir current
serial codes; for example, geograpllical weighted regression (GWR) involves N 2

more computation than a conventional regression mode!; see Fot11eringham et
al. (1996). Tlus metl1odology is applicable to non-linear regression but tlus
would require HPC, alt11ough it is easily decomposed into N-independent
subproblems and hence ideally suited to parallel processing.

2.5.1 A typology of applications

It is usefül to identif)r a basic t11reefold typology of HPC applications rel
evant to geography by identif)ring a small number of generic, application-

HPC applications in geograph)' and GIS 27

independent computational tasks tlrnt appeai· to be int:rinsically suitable for
parallel supercomputing.

A first category might be termed traditional legacy modelling applications,
which are obvions and immediate HPC applications tlrnt can be ported on to
parallel hardware. Many existing mat11ematical ai1d computer models ai·e
highly data-parallel and ai·e well suited for pai·allel computation, pai·ticularly
models that use mat:rix algebra: for example, input-output models, many
econometric models, multi-regional demograpllic forecasting models, spatial
regression models, spatial econometric statistical models, time-series forecast
ing, and t11e family of spatial interaction models ai1d their many derivatives.
The only real justification for HPC here is to make tl1ese existing models run
much faster so tl1at they Gll1 be run at a finer level of spatial resolution on t11e
largest available databases ai1d tlms offer improved levels of representation,
resolution ai1d accuracy. Additionally, HPC enables t11e use of computing
intensive statistical procedures (such as t11e bootstrap, jack-krlife Monte Carlo
simulation) to estimate uncertaint:y ai1d error propagation in computer
models and in principle any computer-based analysis procedure of arbitrary
complexity including sequences of GIS operations. Tllis could involve injecting
noise into data to represent sources of uncertainty and rumling a computer
program to obtain a set of results. This wmùd tl1en be repeated 100 or 1000
or so rimes; see, for example, Openshaw et al. (1991). This is a naturally
coarsely grained parallel task tl1at adds value by generating confidence linlits
on results t11at previously would not have had any. It allows geographers to
become much more realistic by addressing many of the problems t11at once
had to be assumed away in t11e interests of t:ractability; see also Turton and
Openshavv (1998).

A second category covers early types of what ai·e classical but implicit HPC
applications in geography. Sorne modelling and analysis tasks are naturally
pai·allel as they involve tl1e repeated and independent application of t11e same
procedure (i.e. mode!, equations, etc.) at mai1y different map locations
simultaneously. GIS has an implicit parallel application witl1 many opportunities
for speeding up via HPC at vai·ying scales of granularity. Many exploratory spa
tial analysis, modelling, seai-ch and location-optimisation problems in geogra
phy involve a seai·ch over a two- (occasionally tlu·ee-) dimensional map grid
tl1at is eitl1er explicitly parallel or readily rendered so by some lcind of spatial
decomposition . Tllis will allow better-quality solutions to be obtained ai1d also
malce economic t11e application of analysis metl1ods tlrnt previously could not
be applied easily or indeed applied at ail. Severa! otlKr modelling ai1d analysis
tasks process very large amounts of data by t11e repeated application of t11e
same basic computational procedures. For example, micro-analytical simulation
modelling of a population is currently infeasible except on small data sets . The
ability to handle multi-gigabyte databases easily malces it possible to scale up
some types of simulation mode! t11at offer considerable potential for modelling
t11e behaviour of whole populations at a nlicro-level to generate res1ùts at a
more aggregate scale (Clarke et al., 1995).

28 High-pe1Jormance computing applications in geography

A third category is that of entirely new HPC-dependent niethodologies that are
being created by the increasing availability of HPC. The use of HPC to power
new styles of modelling and geographical analysis that are intensely computa
tional and that were (and some may still be) impossible (without teraflop com
puting speeds). It is important to begin serions development research. Many
exciting developments are now theoretically possible (Openshaw, 1994g). For
example, the search for invariant and recurrent 3-D abjects (representing the
oretical spatial pattern concepts) in a spatial data base might easily involve the
computation of 10 million fast Fourier transforms; see, for example, Turton
(1997). Without very fast HPC hardware, this type of application is impossible
and unthinkable. When what was previously impossible becomes practicable
then a fertile mind should soon be able to think up many new possibilities that
were previously unthinkable! It is in this fashion that a computational paradigm
develops and entirely new areas of research emerge.

2.5.2 Some driving factors

The rapid spatial data explosion occasioned by GIS is another major driving
factor. Developments in IT are creating an immensely spatial-data-rich world.
Developments in data base technology and the falling costs of storage have stimu -
lated the increasing use of data warehouses. This is a very significant long-tenu
development because it means that more and more micro-detail of people's
activities and behaviours in space will be available for analysis and, one day soon,
modelling. Major new geographical information-processing technologies are
needed. The most obvions paradigm for dealing with the problems of data riches
created by IT is to use other aspects ofIT (i.e. HPC) to tackle them. If good, or
much, or any, use of these spatial data riches is going to be made, then it is
highly Wcely that many of the new techniques will probably have to use HPC
hardware and hence utilise parallel programming. There is no other way of man
aging a situation in which data volumes continue to grow so much faster than
single processor speeds.

Another aspect is the increasing imperative to develop new tools for the analy
sis of h.ighly important databases simply because they exist and the prospect of
analysis provides either a commercial benefit or a community good (Openshaw,
1994d). Other HPC needs will be created as geographers start to exploit com
putational technologies borrowed from other disciplines (e.g. computational
fluid dynamics (CFD)) and apply them to large-scale geographical problems.
Many AI tools are also intensely computational, particularly neurocomputing,
evolutionary computing, cellular automata and fuzzy logic modelling.
Furthermore, new computer modelling methodologies are creating new ways of
studying human society using distributed AI (DAI); see, for example, Gilberts
and Doran (1994) and O'Hare and Jennings (1996). DAI is the study ofwhat
happens when a set of 'intelligent' computational entities are allowed to interact
and possibly communicate. In theory but not yet in practice, most aspects of
human systems can be studied, including those where social beliefs, cognitive

Sorne examples of HPC applications in geography 29

pro cesses and emotions are important (Gilbert and Conte, 199 5). DAI offers
some prospect of a big step forward in the modelling of human systems by com
puter experimentation with artificial societies. In the GIS arena, there is a real
prospect of developing smarter geographical analysis and modelling tools. In
both cases, there are two principal barriers to overcome, one teclrnical and the
other attitudinal and methodological. The former will solve itself but the latter
one requires social science discipline. The disciplines are sufficiently broad
minded to tolerate a computer-based experimental approach tlrnt runs counter
to traditional practice and established philosoph.ical paradigms.

There are also some other compelling popular scientific and politically appeal
ing reasons for viewing HPC as becoming increasingly important in a geo
graphical context. With a h.igh percentage of Europe and a rapidly increasing
percentage of tl1e world's population now living in urban areas, there should be
a very strong imperative to develop better models of urban systems and to cre
ate an enhanced human urban systems modelling capability. It is surely unac
ceptable tlrnt much more is lrnown about atmospheric circulation on Mars or tl1e
behaviour of tllis or that endangered species of whale than of tl1e behaviour of
even tl1e most basic of human systems. The urban and transportation models
t11at exist today are often well over twenty years old (Batty, 1976; Wilson,
1970). The code may well be recent, and certainly modern GUis make t11em
look 11ice and perhaps easy to use, but tl1e underlying technology is very old,
tl1eir spatial resolution is poor, and tl1e handling of most of the principle process
dynamics is crude beyond belief. It is also apparent, should we look, that many
national governments probably waste billions of pounds of public money by
using old and inefficient geograpllical technologies . Many key databases affect
ing us all relating to environment, healtl1, crime, deprivation, etc . are stored,
guarded and arcllived usually without more tl1an a nlinuscule fraction of their
total information content ever being used or analysed (Openshaw, 1994d) . The
same is true in business . How on eartl1 can UK pic remain internationally com
petitive in tl1e IT age if t11e fullest use is not being made of data resources and
applicable IT technologies. Geo-targeting is widely used to target potential cus
tomers, but the metl1ods in general use have changed little in the last twenty
years. Where is tl1e next generation of dynamic and adaptive, self-optimising,
safe geo-targeters? Geography is tl1e obvions source of many of tl1ese needed
new developments, but so far not much has been produced. There is a risk here
of 'missing the boat', with possibly catastrophic disciplinary ramifications for
botl1 geographical and social science. HPC provides tl1e platform for a rebirtl1 of
many computer-based activities that are exu·emely relevant. It is an opportmlity
tlrnt should not be missed.

2.6 Sorne examples of HPC applications in geography

Despite a widespread neglect of supercomputing witlun geography tl1ere have
been some useful developments. In the UK, tl1e EPSRC's HPC I11itiative
(1994- 97) funded a small geography project to port a selection of existing

30 High-performance computing applications in geograph)'

serial and vector codes on to the Cray T3D (Turton and Openshaw, 1998). This
small but diverse portfolio of applications may mark the faltering beginnings of
an HPC culture within geography. A key objective was to demonst:rate some of
the new science that can be performed now via case studies involving parallel
supercomputing. Healey et al. (1998) provide some other physical geographical
illusu·ations.

2.6.1 Parallel spatial interaction modelling of very large data sets

One of the earliest uses of parallel computing in geography has concerned the
parallelisation of the basic spatial interaction mode! ; see Harris (1985),
Openshaw (1987). This mode! is cenu·al to several important areas of regional
science, urban and regional planning and spatial decision support (Wilson,
1974; Birl<in et al., 1996) . For illusu·ative purposes, the aggregate simplest
spatial interaction mode! can be expressed as

(2.1)

where Tii is tl1e predicted flows from origin i to destination j, A; is an origin con
su·aint term, Ü; is tl1e size of origin zone i, Di is tlie atu·activeness of destination
j, cij is tl1e distance or cost of going from origin i to destination j, and b is a
parameter tl1at has to be estimated. The mode! was first derived in a tl1eoretically
rigorous way by Wilson (1970) using an enu·opy-ma,,imising metl1od. Clearly
tl1is mode! is implicitly lughly parallel, since each T;i value can be computed
independently. Parallelisation here can be important because tl1e mode! presents
a computational challenge since computing times increase witl1 tl1e square of the
number of zones (N). Small N values can be run on a PC, but large N values
may need a supercomputer. Note tl1at tl1e quality of tl1e science reflected in tlus
mode! reflects botl1 tl1e number of zones (more zones provide better resolution
tl1ar1 few) and tl1e specification oftl1e mode! (more sophisticated models require
more computation). Developments in IT over tl1e last decade have dramatically
increased the availability and sizes of spatial interaction data sets, wlllie tl1e su·uc
ture of tl1e mode! has remained lar·gely unchanged. Consider an example. The
1991 census provides journey-to-work and migration data for 10,764 origin ar1d
destination zones. A par·allel version of Equation (2.1) has been run on tl1e
KSRl parallel supercomputer at Marichester. It had to use straight-line distances
because the storage of a 10,764 by 10,764 mau·ix of C;i values based on network
costs was infeasible at tl1at time. Openshaw and Sumner (1995) report tl1at tl1e
calibration of a doubly consu·ained spatial interaction mode! for tl1e entire set of
UK journey-to-work flows took 29 minutes on tlie KSRl 64-processor par·allel
supercomputer, compared witl1 264 hours on a single-processor Sunsparc
10/ 41 workstation. The same code run on tlie later 256-processor Cray T3D at
Edinburgh required less tl1an 3 minutes. A singly consu·ained mode! of tl1e same
data took 17.6 hours on tl1e workstation, compared witl1 8 minutes on tl1e
KSRl and 40 seconds on tl1e Cray T3D (Turton and Openshaw, 1997) . In tlus

Sorne examples of HPC applications in geography 31

2000

1800

1600

1400

~
1200 g c: 1000 0 R

-~
800 ::>

'" > 600 w
400

200

100 150 200 250 300

Number of processors

Figure 2.1 Performance of a singly constrained spatial interaction mode!.

latter instance, the parallelised code runs two orders of magnitude faster than
the serial code, and wall dock computing times diminish linearly with the num
bers of processors being used; see Figure 2.1. Scaleability is a very desirable
property in the world of parallel HPC as it opens up the possibilit:y of being able
to mode! the largest available spatial-interaction data sets. Should this mode!
ever be used with net\vork distances for the C;i variable instead of su·aight-line
distances then there is no longer any alternative other th<rn the Cray T3D as the
limiting factor is the need to store 10,764

2
C;i values. However, tlus also begs

tl1e question as to how long a typical GIS would talce to compute inter-zonal
network times for tl1e encire road net:work of tlK UK. Tlus may well require a
parallel GIS! However, by current standards even tlus census flow data set is
really small. For instance, in tl1e UK tl1ere are 1.6 million postcodes and 27
million households for wluch interaction data sets probably already exist: for
example, telephone traffic , EFTPOS u·ansactions. Additionally, tl1e flows can be
disaggregated by mode, gender and socio-economic structure to create tl1e need
to handle ~l by ~l by K sizes of flow table , where K could be in tl1e range of 5 to
25. However, current HPC now malces it possible to mode! the largest flow data
sets, which represent tl1e spatial interactions of tl1e space-time behaviours of
some important aspects of tl1e worl<ings of an entire connu-y: a task of botl1
considerable practical value and immense geographical fascination.

2.6.2 Neiv parameter estimation methods

Not all HPC applications require tl1e use of large data sets. Diplock ar1d
Openshaw (1996) demonsu·ate some of tl1e benefits of using genetic and
evolutionary su·ategy-based parameter estimation metl1ods as a replacement
for conventional non-linear optimisation methods . Figure 2.2 shows tl1at even for
the simple spatial interaction mode! described in Equation 2 .1, tl1e fonction
landscape for a residual sum of squares fonction is very complex because of

32 High-performance computing applications in geography

6000.00000

5000.0 0000

ë 4000.00000
::J
0
u
c
0

TI
$ e aooo.oaaoo
~
::J

~
c
0 g 2000.00000
::J
ll.

1000.00000

0000.00000

g ~ ;[

~ ~ ~
<O "' ~ N ;li :e "' <O "' "' m

~ $ <ri ~ .. o; oJ
9 9 9 9

0 N ;1; ;! ~ N ..
oJ ~ g g
9 0

~
1

- Error func lion value
1

Expo nential pro tection counl

12 "' <O <\ N 0 "' "'
.. N 0 .. N "' <O "' m " ~

gi "' .. ~ :g ~ ::3 ::3 :g gi 0 0 0

Parameter value (beta)

Figttre 2.2 A.rithmetic instability plot for a singly constrained spatial interaction mode!.

arithmetic instabilities due to the exponential deterrence firnction, which can gen
erate very large and very small numbers , depending on the parameter p. In fa.et ,
the region where there are no risks of arithmetic exception conditions being
generated is surprisingly small. The problems become worse when more par
ameters are used; for example, a two-parameter competing destinations version
is much more complex; see Figure 2 .3. Yet it is this fonction 'landscape' of fiat
regions, vertical cliffs and narrow valleys leading to the optimal result that con
ventional parameter-optimisation methods have to search. If they hit any of the
cliffs or fall into local sink holes or find fiat regions they get stuck because they
have no way of escaping or of even telling you that tliis has happened. The new
methods are able to work well on these problems as they are far more robust.
However, the implications here are extremely serious, as the results imply that
virtually ail statistical and mathematical models with exponential terms in them
could very easily produce the 'wrong' result and hence there is no assurance that
the conventional non-linea.r optimisers are always safe to use . There are particu
larly serious implications here for logit and loglinear modelling, which involve
the optimisation of models rich in potential exponential fonction problems.
Once there was nothing you could do about it, but now there is provided that
you can afford a factor of 100 to 1000 rimes more computation. This is a good
example of one type of application where HPC can have an almost immediate

Some examples of HPC applications in geography 33

600.0000 -

500.0000 -

~ 400.0000
Cô
>
c:
0
:g
c:
.2

300.0000 -

e 200.0000 -

ùJ

CD
9 N

9

Parameter value (beta)

0 q ..,.
0 CD

0

0 q
CO
0

0
0
ci

~ 09 .50
~ OB.OO

.:: 06.50

.:: 05.00

~ 03.50

Parameter
value (delta)

Figure 2.3 A.rithmetic stability map for a two-parameter competing destinations spatial
interaction mode!.

impact as a plug-in replacement for an older conventional technology. These
new methods are also para.Ile! or can be recast to emphasise these aspects.

2.6.3 Parameter landscapes

Another illusu·ative potential use of HPC is provided by the geographically
local regression methods of Fotheringham et al. (1997) and Brunsdon et al.
(1996). This refiects an increasing desire to move away from global mode!
parameters to allow for spatially su·uctured non-stationary effects . One way of
doing this is to have a moving window that defines a local view of a large study
region, estima.te some statistic for the data widlln this window, map its value
and move the window on a little. Anotl1er approach is to re-estimate the
regression mode! eitl1er for each data point or for a lattice, using a kernel
smootlling of tl1e data values tlut refiect tl1e local spatial disu·ibution.

34 High-performance computing applications in geography

Compared with a conventional modelling approach, the extra computational
load is at least N 2

' but it is highly parallel. The resulting maps of parameter
l_andscapes may offer new insights into local variability, perhaps indicative of
missing explanatory variables, that would otherwise be lost or hidden in global
statistics. This strateg)' meets one of Openshaw's (1994b) GISability criteria for
usefu1 GIS spatial analysis methods, namely that the results should not depend
on the arbitrary definition of a study region. There is every indication that the
potential benefits of developing this type of geographically weighted statistical
teclmology may be considerable, provided that we can afford the computa
tional cost of doing it properly.

2.6.4 Better spatial netJvorlt and location optimisation tools

The basic spatial interaction mode! is often embedded in a non-linear
optimisation framework that can require the mode! to be run many thousands or
even a few millions of rimes in the search for an optimal solution to a planning
problem, for example to determine the optimal spatial network for a set of M
facilities given N possible locations, when N is large. There are many different
types of important public and private sector spatial optimisation problems; for
instance, where is the best location for a new hospital or a new hypermarket,
which bank branches should be closed first with least impact on customer acces
sibilit:y, where are the optimum locations for t:ransmitters to provide ma,ximum
coverage of a population, or even where are the optimal locations for mobile
paramedic vehicles at different rimes of the day given recent historical patterns of
demand? As finer-resolution data become available so it becomes important to

both use more zones and seek to improve the quality of results being provided
by spatial optimisation heuristics that were originally developed over t\venty
years ago.

A collaborative project bet:ween EPCC and GMAP Ltd has already demon
strated some of the potential business benefits that can be gained. George
(1993), and Birkin et al. (1995) describe the use of a retail spatial interaction
mode! to optimise a net:work of car dealers using the CM-200 parallel processor.
They achieved a speeding up of 2260 rimes compared with the original serial
code. Turton and Openshaw (1996, 1997) describe hmv they ported this same
mode! on to the Cray T3D and ran it using data for 822 shopping centres and
2755 origins. This version ran at an amazing rate of over 70 million mode! eval
uations per hour, with a computing speed of 7 .6 gigaflops using 256 processors.
This is an astonishing 2 .8 million rimes faster than the original serial code when
run on a Sun workstation. The Cray T3D version also produced results t\Vice as
good as was previously attained, because the extra model-crunching power was
used to develop a better optimisation algorithm. It is this type of application for
which HPC is so well suited, because the quality of the results is directly related
to t11e number of models tl1at can be evaluated in a fixed rime period. It is a
good example of where major applied benefits can be gained by becoming more
HPC-minded, provided tlut tl1e application is sufficiently important to justify

Some examp/.es of HPC applications in geography 35

t11e cost of tl1e computation. White it is unlilœly tlut many commercial organi
sations vvould want to buy a parallel HPC costing several million pounds, a few
hours of computing rime would probably cost no more tl1an a workstation.
However, as we suggest later, an even cheaper (almost zero-cost) option would
be to simulate tl1e performance of parallel HPC using existing PCs or worksta
tions at night (instead of leaving tl1em idle or switching tl1em off). Of course a
few hours may now become a day or t\vo, but is t11e increase in elapsed rime tlut
significant? The point here is tl1at HPC need no longer be eitl1er an exclusive
and expensive club but is witllin tl1e reach of many commercial organisations
(and geography departments) if tl1ey were so minded.

2.6.5 Using HPC to create new models of geographic systems

There is also a need to improve tl1e quality of t11e models being used in geo
grapllical research by '111Î11Îng' tl1e spatial data riches created by IT and GIS.
There are revolutionary computational technologies t11at now offer new ways of
building models tlut eitl1er replace tl1e existing models based on matl1ematical
and statistical approaches or can be viewed as complementing tl1em. One
approach is to create an automated modelling system tl1at uses genetic algor
itl1111s and genetic programming tecluliques to search for potentially useful new
models . The automated modelling system (AMS) metl1od ofOpenshaw (1988)
used tl1e Cray I vector supercomputer in an early attempt to define and tl1en
explore a small part of t11e vast universe of alternative spatial interaction models
t11at could be built up from tl1e available pieces (e.g. variables, parameters, m1Î
tary and binary operators, standard matl1ematical fonctions , and reverse Polish
rules for well-formed equations) by using evolutionary programming algorithms
to 'breed' new mode! forms. These metl10ds are explicitly para.lie! (each member
of a population of models can be evaluated in parallel) and also implicitly parallel
(the genetic algoritl1111's schemata tl1eorem). The problem witl1 AMS was tl1e
use offaed-lengtl1 bit strings. Koza (1992, 1994) describes how tl1Îs restriction
can be removed by using what he terms 'Genetie programming' (GP). The AMS
approach has now been redeveloped in a GP format. However, tests indicate
tlut computing rimes of several weeks ;u·e needed on a fast-vector supercom
puter (t11e Fujitsu VPX2400) and tl1at GP is far more suitable for parallel than
for vector HPC. The computational challenge is considerable. Imagine tl1e task
ofevaluating 100,000 non-linear models , each ofwl1ich contains a varying num
ber of unlrnown parameters tlut have to be estimated using one (or ideally mul
tiple) data sets. Tllis would probably require several billion mode! evaluations.
However, as HPC hardware becomes faster so tllis model-crunclling strateg)'
becomes increasingly am·active. The results from porting tl1e genetic program
ming codes on to tl1e Cray T3D suggest that not only can existing conventional
models be 'rediscovered' but also tl1at new mode! forms witl1 performance
levels t\vo or tlu·ee rimes better can be fairly easily found (Turton et al., 1996,
1997; Diplock, 1996). If tl1e new 111etl1ods work well on man y other data sets,
then tl1ey would constitute a means of extracting knowledge and theories from

36 High-performance computing applications in geograph)'

Table 2.2 Comparison of the performance of different types of spatial interaction mode!.

Mode!

Traclitional gravit)' mode!
Entropy-maximising mode!
Best geneticaliy bred mode!
Best genetic programming-based
Best neural nel:\vork mode!
Best fuzzy logic mode!
Best hybrid partly fuzzy logic

Residual standard
deJJiation

20 .7
16.3
12.7
11.2
7.4

13.1
11.6

Index of 1n odel
pe1fonnance

78
100
128
141
220
124
141

Notes. Ali models are origin-constrained. Entropy-maximising mode! is tliat shown in Equation 2.1.
The gene tically bred mode! is based on fom mode! pieces. The neural network mode! is a feed
forward perceptron witl1 fifty neurons in a single hidden layer. The fuzzy logic model's fuzzy rules and
membership fonctions we re optimised by a genetic algoritl1111 witl1 four membership se ts for each of
tl1e input variables and eight fuzzy output sets. The hybrid partly fu zzy mode! uses fuzzy weights
associated witl1 each input to create a mixed distance decay, entropy, intervening and competing
destination mode!.

the increasingly geography data-rich world ail around us. It is becoming increas
ingly possible to compute our way to better models. The problem at present is
that even a single run of this approach on any reasonably sized data set could
easily fully occupy a Cray T3D with 512 processors for several months. The full
benefits of this approach will have to wait for teraflop (or faster) HPC, but it is
possible to handle small or simple problems now and thus develop the code now
that it is ready once there is sufficiently fast hardware on which to run it.

Otl1er new approaches to building nevv types of spatial models are described
in Openshaw (1998a). Table 2.2 gives a comparison of tl1e performance of a
selection of genetic, evolutiona.ry, neural net and fuzzy logic spatial interaction
models. In general performance, improvements of over 200 percent over con
ventiona.l models a.re possible, and tllis may be more tl1an sufficient to justify tl1e
10,000 to 100,000 rimes more computation tl1at tl1ey involve. Sorne of tl1ese
new models are purely black boxes (viz. tl1e neural net\vork models), but otl1ers
are capable of plain English expression (tl1e fuzzy logic models) or are in
equation form . The principal constraint on tl1e furtl1er development of some of
tl1ese computationa.l modelling methods are slow HPC speeds. Again tl1e best
strateg)' is to start tl1e development process now using manageably small data
sets, prove tl1e concepts work and tl1en scale up tl1e problem sizes as HPC hard
ware improves. 'Start now, start small and dream big' is a useful slogan.

2.6.6 Flexible data reportinggeographies itnder user control

A very common spatial data management need is tl1e development of better
ways of partitio11ing tl1e map space. Many spatial planning problems involve tl1e
design of z011ing systems: for example tl1e creation of parliamenta.ry constituen
cies tl1at are of an approximately equal size and compact in shape, tl1e identifica
tion of sa.les areas and facility catchment areas to equalise sa.les potential or

Sorne examples of HPC applications in geography 37

population accessibility and to design zones for reporting statistica.l information
that are simulta.neously safe from a data confidentiality point of view, statistically
comparable and meet user needs; see Martin (1998). GIS has created tl1e pros
pect of flexible geograpllica.l aggregation of many spatial data sets tl1at llitl1erto
were reported only for arbitrary and fixed sets of areas. The problem is tl1e lack
of tools for engineering z011ing systems and for coping witl1 tl1e fact tliat tl1e
same data aggregated to different sets of areas will often produce completely dif
ferent results; see Openshaw (1976, 1978). Statisticians refer to tllis as tl1e modi
fiable areal mlit problem (Openshaw, 1984). There is, therefore, an increasing
need for automated zone design tools tliat will allow tl1e use of tlie most
appropriate zones for any given purpose.

The zone design task is a specia.l type of optinlisation problem:

optimise F(Z)

where F(Z) is some user-defined fonction sensitive to tl1e aggregation of zonal
data specified by Z, and Z is an aggregation of N original zones into M regions
(M < N) such tl1at tl1e members of each region are contiguous witl1 otl1er mem
bers of tl1e same region and each of the N zones is assigned to only one region.
There may be otl1er constraints on tl1e nature of tl1e data generated by Z, i.e.
tl1at tl1e regions have to have a maxima.l level of compactness in tl1eir shape or be
above a mülimum population size . Tllis is a specialised and ha.rd type of optimi
sation problem, because Z is discrete (it is a zoning system) and F(Z) is
discontinuous, non-linear and non-convex, and probably has multiple optima.
Varions heuristic algoritl1111s have been developed to solve tllis problem; see
Openshaw (1976) and Openshaw and Rao (1995). Originally, only small prob
lems could be ha.ndled, but tl1e availability of digital boundary information for
the 150,000 census enumeration districts used in tlie 1991 UK census has
emphasised tl1e importance of being able to handle tl10usands of zones. It is
Wœly tl1at by 2001 1.6 nllllion digital postcode boundaries or 32 million address
points will be available as basic spatial building blocks for creating flexible user
specific z01lli1g systems. There is a real prospect that tl1e automated design of
census output are as for tl1e 2001 census will provide considerable financia.l
savings and possible additional invisible benefits from tl1e use of 'better' spatial
reporting frameworks tl1at seek to simultaneously preserve data confidentia.lity
and miilimise tl1e amount of aggregational damage clone to tl1e data.

The zone design problem can be solved using HPC. The best results currently
require tl1e use of a simulated a.nnea.ling algoritl1111 (Openshaw and Rao, 1995)
but computing rimes depend on tl1e size of N. More complex constrained prob
lems may ta.lce 1000 rimes longer. Fortunately tl1e zone design code has been re
developed in a parallel form; see Openshaw and Schnlidt (1996), Turton and
Openshaw (1998). Consider an example: tl1e current allocation ofurban depri
vation grants in tl1e UK depends on tlie DoE's deprivation indicator computed
at tl1e census ward level. There is concern among local authorities tl1at tl1e use of
wards under-represents tl1e rea.l situation in some areas. It may also exaggerate

Lbw91

D Weil-off

D
D OK -Deprived

Figure 2.4 Deprivation areas in Leeds/Bradford based on wards.
Copyright: HMSO, JISC and ESRC.

Otest

D Weil-off

D
D OK -Deprived

Figure 2.5 Deprivation areas in Leeds/Bradford based on ward-Wce areas re-engineered
from enumeration districts.

Copyright: HMSO, JISC and ESRC.

Sorne examp/.es of HPC applications in geograp hy 39

the extent in others. To investigate this problem, the census enumeration ctisu-ict
data for Leeds-Bradford has been re-engineered to maximise the number of
areas that would qualif)r for urban aid, subject to the consu·aint that the areas
should be compact, of a similar population size and of the same number as the
current wards. Figure 2.4 shows the ward-based results, and Figure 2.5 the new
re-engineered enumeration-ctisu·ict-based results. Even better results would have
been obtained ifsmaller building blocks (i.e. unit postcodes) had been used. In
1991 this was not possible, and the cost was a potentially large misallocation of
public fonds. In 2001 it will be feasible. Potentially, this ability to engineer
purpose-specific geographical frameworks for reporting statistics is of consider
able practical importance and would seem to be very relevant to many areas of
spatial data management. Openshaw and Alvanides (1999) provide further
examples of zone design .

2.6.7 Improved spatial classification methods

The mtlitiv<u-iate classification of spatial data is a very useful data reduction
device. The spatial data explosion of the last two decades has increased the num
ber of observations from a few tens (in the 1960s) to 150,000 census output
areas in 1991 , to 1.6 million postcode areas and 32 million households in 2001.
Spatial data exists for everyone, but not ail databases contain everyone. T he
most important change during the 1990s has been the implicit addition of ge
ography to most databases via postcodes and postal addresses. Massive multi
gigabyte databases containing many millions of records about many millions of
people are an increasingly common occurrence in commerce and government.
An ability to summarise the geographical information contained in these vast
databases is extremely important for a multitude of research and applied pur
poses. Classification methods such as multivariate cluster analysis have a long lùs
tory, and most of the methods in common use date from the 1960s. They can
be 'scaled up', but in a geographical context the special nature of the spatial
information is usually ignored . For example, the 1991 census data are available
for 150,000 small areas in Britain with up to 10,000 variables for each area. The
data are a mixture of 100 per cent and 10 per cent coded information, many
have been randomised to preserve confidentiality, some values have been sup
pressed, and the statistics <U-e reported for geographical a.reas that vary in terms
of size, shape and heterogeneity. Adctitionally, there are su·ong spatial autocorre
lation effects, and the typical statistical ctisu·ibution is more often J-shaped than
bell-shaped. One solution is to develop neural-net\vork-based classifiers that
attempt to include rather than ignore the problems of spatial data classification.
A Kohonen self-organising map-based approach is one such method that has
been adapted to handle the problems of spatial classification (Openshaw, 1994c;
Openshaw et al., 1995). This algorithm is parallel but only at a very fine level of
granularity. It had to be completely rewritten in a parallel data form so that it
wmlid produce good levels of performance on the Cray T3D; see Openshaw and
Turton (1996) for der.ails. On the Cray T3D with 256 processors a single run

40 High-performan ce computing applications in geograph)'

takes 10 hours, but the results are qui te dissimilar from those produced by a
more conventional method and tell a very different story about the structure of
Britain's residential neighbourhoods.

2.6.8 Intelligent exploratory spatial analysis systems

As previously noted, a major by-product of the GIS revolution of the mid- l 980s
has been to add geographical x, y coordinates on virtually al! people- and
propert:y-related computer systems. Unfortunately, there is as yet little appropri
ate geographical analysis technology able to efficiently and comprehensively
explore tl1ese large and complex spatial databases for patterns and relationships
witl10ut being told in advance precisely where to look, when to look, and what to
look for. Ir is interesting tlrnt one of tl1e earliest applications of supercomputing
in geography concerned tl1is problem. Openshaw et al. (1987) describe a proto
type geographical analysis macl1ine (GAM) tlrnt was able to explore a spatially
referenced child cancer database for evidence of clustering. The GAM used a
brute force grid search tl1at applied a simple statistical procedure to millions of
locations in a search for localised clustering. Ir was run on leukaen1ia data for
nortl1ern England and is credited witl1 tl1e discovery of tl1e Gateshead cancer
cluster, a previously unknown problem. The long computer run rimes required
tl1e use of supercomputers; see Openshaw and Craft (1991). A parallel version of
tl1e latest GAM/K code has been developed and is discussed in deptl1 in later
chapters. Altl10ugh tl1e GAM no longer needs an HPC to run it, it may still be
necessary if large-scale Monte Carlo simulation is used to validate tl1e findings;
see Openshaw et al. (1999), Openshaw (1998b).

The same basic GAM type of brute force approach has been used to search
for spatial relationships. The geograpl1ical correlates exploration macl1ine
(GCEM/l) of Openshaw et al. (1990) examines ail 2'"- 1 permutations of m
different tl1ematic map layers obtained from a GIS in a search for localised
spatial relations11ips. Ir too is massively parallel, because each of tl1e 2"'- 1 map
permutations is independent and can be processed concurrently. Lilce GAM,
GCEM was ü1itially forced ü1to a vectorisable form even tl1ough it is far more
amenable to parallel processing. Here is yet anotl1er good idea tlrnt has been
waiting, for over a decade, for faster parallel HPC; see also Openshaw (1998b).

An important new need is to broaden ilie exploratory pattern search process
to include ail aspects of spatial data (e.g. location in space, location in rime, and
multiple attributes of tl1e space-time event) as well as to discover how to malce
tl1e search more intelligent. Openshaw (1994d, 1995b) describes tl1e develop
ment of space- time-attribute creatures: a form of artificial life tlrnt can roam
around what he terms tl1e geocyberspace in an endless hunt for pattern; see
Openshaw (l 994b) . The daim to being intelligent results from tl1e generic algor
itl1m used to contrai tl1e search process and tl1e use of computational statistics to
reduce the dangers of spurious results. Ir is strongly dependent on having suffi
cient parallel computational power to drive ilie entü·e process. Openshaw and
Perree (1996) show how tl1e addition of computer a.i1imation ca.i1 help users to

Some examples of HPC applications in geography 41

visualise and understand tl1e geograpl1ical analysis . Tl1is type of highly
exploratory sea.i·ch technology is only just becoming feasible witl1 recent
developments in HPC, a.i1d considerable research is still needed to perfect
the metl10ds. However, it promises a radically different and understa.i1dable
approach to exploratory spatial analysis in GIS tl1at is powered by HPC. No
doubt tl1ere will be many otl1er variations on tl1is broad tl1eme once it is realised
that tl1ere are no longer a.i1y mea.iüngful computer restrictions on what you may
wish to do. Ir is a great time to be inventive.

2.6.9 Using HPC to buildgeographical lm01vledge systems

GIS has provided a micro-spatial data-rich world, but few or no tools are able to
help identify eitl1er tl1e more abstract recurrent patterns tlrnt exist at 11igher
!evels of generalisation or new concepts from tl1e data riches (Openshaw, l 994e).
Geography contains ma.i1y tl1eories about space tlrnt can be expressed as idealised
t\vo- and tlu·ee-dimensional patterns tl1at a.i·e supposedly recurrent. Traditionally,
tl1ese concepts and tl1eories have been tested usü1g aspatial statistical metl1ods
tl1at require much of tl1e geography to be removed purely so tl1at a.i1alysis ca.i1 be
performed. For example, does t!K spatial social structure of Leeds as shown by
tl1e 1991 census conform to a broadly concent:ric ring type of pattern? Tl1is
hypotl1esis ca.i1 be tested using statistical metl1ods by first defining a cenu·a]
point, specifying a series of rings of fixed width and tl1en using a statistic of some
kind computed usü1g census data to test tl1e a priori hypotl1esised u·ends in
social class . However, tl1is clea.i·Jy requires considerable precision a.i1d is not really
a.i1 adequate test of tl1e original hypotl1esis, which did not specify rü1g widtl1s,
identif)r a cenu·al point or define at what level of geograpl1ic scale tl1e pattern
exists . A possible solution is to use pattern recog11ition and robotic vision
teclrnology to see whetl1er a.i1y evidence of a general concenu·ic geographical
su·ucture exists in tl1e census· data for Leeds, after allowü1g for tl1e distorting
effects of scale, site and topography; see Turton (1998) . If no idealised concen
u"ic patterns exist, tl1en wl1ich of a library of different pattern types might be
more appropriate? The HPC revolution of tl1e mid- l 990s provides an
oppornu1ity to become Jess precise and more general by developing spatial
pattern-recognition tools tl1at ca.i1 build up recmTii1g map pattern libra.i·ies of tl1e
ma.i1y different types of recurrent idealised forms . Suppose you ask tl1e question:
how ma.i1y different spatial patterns do British cities exl1ibit? Currently, tl1is
carrnot be answered, but at least tl1e tools exist to allow geographers to start to
find out . Openshaw (1994e) argues tl1at a more generalised pattern-recogrütion
approach provides tl1e basis for a fresh look at geographical information witl1 a
view to developing entirely new ways of exu·acting useful new knowledge from
it. However, tl1is will only become possible as HPC enters tl1e teraflop era a.i1d it
becomes feasible to apply pattern templates to ma.i1y millions of locations at
many different levels of geograpl1ical resolution. Iris computationally exu·emely
intensive but lüghly parallel a.i1d has promise as one approach to geograpl1ical
data mining.

42 High-performance computing applications in geograph)'

2.6.10 New results from old models

A related opportunity for a quick gain in benefit from HPC is the use of the
bootsu-ap to estimate parameter variances; see Efron and Gong (1983) for
details. This is quite straightforward but needs an HPC to make it feasible. You
merely have to run the mode! a few hundred or a few thousand rimes or N-1
rimes (where N is the number of observations). This is naturally parallel, because
each run can be assigned to a different processor. Indeed, no great parallelisation
effort is needed and this strategy can be applied to many existing models in
order to identif)r confidence intervals for predictions. Research with a multi
region mode! used to make population forecasts for the European Union bas
identified the error limits in forecasts made for 2021 ta 2051. The results are
surprising, as they suggest that currently there are no reliable long-term
forecasts for tl1e EU as tl1e confidence limits are extremely wide. The problem
appears ta be due ta uncertainty in tl1e fertility and mortality rate forecasts; see
Turton and Openshaw (1998) for furtl1er details.

2. 7 Para.Hel GIS applications

2.7.1 Supercharging GIS

Apart from geocomputation, GIS is tl1e other area where parallel processing is
likely to be useful. Healey et al. (1998) are correct to argue tlut performance
will soon become a serions concern in GIS. They write:

The expectations of potential users are high, yet tl1e tl1roughput of useful
results from GIS analysis is often limited. Processor, memory, disk and net
work consu·aints still temper tl1e entl111siasm of even tl1e most energetic and
insomniac of postgraduate students. Similarly, conu·act deadlines ticlc past
. . . while dozens of workstations stand idle at night. Power on the desktop
bas brought excellent interactivity to the user interface, but it has yet to be
harnessed enterprise-wide for cost effective GIS processing.

(pp. 1-2)

Parallel GIS offers an obvions solution, even if it may not be an exclusively HPC
one. They list the following reasons (pp. 1-2):

1 even tl10ugh computer chip speeds are increasing they are no match for tl1e
growtl1 of available GIS and remote-sensing data;

2 a growing need for real-time GIS applications witl1 fast or even sub-second
response rimes on large and dynamic data sets;

3 tl1e more exploratory, combinatorial or interactive kinds of analysis require
hardware far more powerful tlrnn workstations;

4 potential users of GIS have expectations of high performance, yet tl1e
tl1roughput of useful results from GIS analysis is often limited;

5

6

Parallel QIS applications 43

t11e increasing use of mapping and analysis in conjunction witl1 tl1e World
Wide Web, witl1 millions ofpotential users, will result in enormous demands

for multi-su·eamed performance; and
given these demands for botl1 high-performance computa~on .and data
input and output it is now a matter of concern tlut GIS 1s sull largely
based on algoritlm1ic approaches originally developed for slow senal

processors.

They write 'Parallelisation can ... be seen as a way of "~upercharging" a GIS to
give increased performance' (p. 91). Their vision i~ one 111 whKh tl1e parallel GIS
implementation is totally u·ansparent to tl1e user; 1t lo~ks and feels tl1e same but
it runs much faster. So 'witl1 GIS applications clamounng for enhanced tl1rough
put, and t11e potential offered by parallel processing, bringing ~1e technologies
toget11er would seem to offer substantial benefits, 1f successful (pp . 3-4) . We

entirely agree.

2.7.2 Some problems

Healey et al. (1998) also outline a number of potential problems, including:

1

2

3

4

5

6

until recently, parallel processors focused on munber-crun~lung computing
power ratl1er tJ1an input- output bandwidth, vvhereas GIS 1s botl1 compute

and input-output intensive; . .
GIS data structures are complex and reflect a senal compuung era based on
relational databases, which are not readily parallelised;
many GIS operations are multi-stage, requiring th.e application of several
algoritl1111s in sequence, not al! of which are parallehsable; .
computation and input- output may be interleaved dunng tl1e same

operation; .
it may be appropriate to link the code for individual operauon~ to a pro-
prietary database manager, which may not be compauble w1th parallel

hardware; and . .
wlule t11ere is a shortage of skilled staff wi tl1 parallel programm111g experuse,
tl1ere are even fewer who are also knowledgeable of GIS algoritl1ms.

Healey et al.'s (1998) su·ategy is ta explain and document tl1e issues a~1d prob
lems so tlrnt future work can build on it in a su·uctured manner. It 1s useful,
tl1erefore, to briefly review and comment on tl1e parallel GIS applications. tl1at
t!1ey suggested. In particular, it is essential ta consider wheth~r the granulanty or
scale of tl1e parallelism in many GIS applications is appropnate ~o.r present and
forure parallel hardware. These tapies are covered in greater detail 111 subsequent
chapters, but tl1e current purpose here is to u·y to establish whetl1er or n~t ~ar
allel GIS is Jikely to be a viable HPC concern or more relevant to a more lumted
small-scale multi-processor workstation teclmology.

44 High-performance computing appl.ications in geography

2.7.3 Parallel GIS algorithms:for HPC or multi-processor
1vorlzstations?

Healey et al. (199 8) identify vector polygon overlay and raster-vector conversion
as the most important fondamental GIS algorithms for parallelisation but then
added vector-raster and a few others to their list: generalisation, terrain model
ling, parallel database management, spatial analysis and remotely sensed image
analysis. However, the varions chapters of their book are mainly concerned with
theoretical issues presented in a rather abstract and hard to comprehend manner
rather than with their implementation in working GIS systems.

A critical distinction to bear in mind is bet\veen looking for parallelism ivithin
an algorithm and/or looking for it at a coarser level. As HPC hardware becomes
faster, so the m1Îts of work that a task is decomposed into will need to increase
in computational size . For example, once it made sense to try to parallelise a sort
program or a floating-point operation at some fairly microscopie level; today, it
almost certainly does not. Also, basic common sense needs to be applied. Hence
there is almost certain.ly no point in parallelising point-in-polygon algorithms,
because they are already fast enough and the parallelism is hard to find. The
same may be true for polygon overlay and many other common GIS fonctions .

Indeed, is it really worth the effort of parallelising GIS fonctions that typically
require on.ly a few seconds or minutes (or less) of computing rime, or should
you instead concentrate on the parallelism in the application calling the GIS
operation a large number of rimes? If the latter never happens and the former is
all that ever happens then there may well be little to be gained, and parallel GIS
is more a multi-processor workstation type of problem tl1an a serions challenge
to HPC.

Tlus point can be clearly seen in t11e chapter on 'Spatial Analysis' by Densham
and Armstrong (1998). They analyse tl1e performance of a Getis and Ord
(1992) g -statistic. In its original form, tl1e amount of computation is N 2

, where
Nis the number of points or zones being processed. They obtained good resu.lts
on varions parallel maclunes, but you need very large N values before comput
ing rimes increase to become even slightly u·oublesome. For example, t11ey
quote a single-processor KSR tl1at took 5919 seconds to process 10,000 points
but on.ly 124 seconds when fifty-11Îne processors were used . However, a modern
workstation (five years later on) would be able to run tlus application in a few
hundred seconds (maybe much less). Additionally, tl1e crafty and cunning pro
grammer would use clever spatial data-reu·ieval algoritl1ms to u-y to remove tl1e
N 2 effect so tl1at it would talce only a few seconds on a PC. Likewise, Densham
and Annsu·ong (1998) also present a shortest patl1 parallelisation run on a u·ans
puter, parallel interpolation and lU.l.l shading tl1at all substitute computing power
for intelligence when calculating nearest neighbours in point data. There is no
dispute about tl1eir acluevements from a historical parallel algoritl1ms perspective
(t11e u·ansputer no longer exists), but their metl1ods do not need HPC and, if
better algoritl1ms were used for tl1e nearest neighbour search, tl1ey won.Id most
certain.ly run fast enough on a PC for most applications.

Overcoming access barriers 45

A similar conclusion may one day be applicable to many but not all of t11e par
allel algoritl1ms discussed in Healey et al. (1998) . The most important excep
tions are almost certainly tl1ose applications where eit11er enormous quantities of
data are involved or where after carefol ttu1Îng of spatial analysis code t11e total
run time is unacceptably large or where tl1e same sequence of operations is likely
to be repeated many tl1ousands of rimes (e.g. in Monte Carlo simulation of error
propagation). On the otl1er hand, from a GIS developer's perspective t11e fact
t11at parallel GIS is unlikely to need HPC for many of its applications is a very
usefo.l conclusion, since it is Wcely t11at modest numbers of tightly coupled
processors are probably all tl1at most end-users will ever aspire to, and even here
many of t11ese developments will probably be driven by hardware availability
rat11er t11an any real need for a new parallel GIS.

So our view is tl1at parallel GIS is botl1 a good idea and an obvions develop
ment, but to be frank most of GIS does not need an HPC platform. Indeed, in
many cases t11e extent of t11e parallelism is small enough to suggest t11at relatively
few processors will be all that most general-purpose users of GIS will probably
need. However, t11ere are some important exceptions and t11ese will discussed

furtl1er later.

2.8 Overcoming access barriers

Geographers and social scientists will probably always have problems in attain
ing sufficient HPC resources for very large-scale projects, altl1ough more mod
est applications will tend to succeed far more easily. The reason is simply tl1at
t11e historical justification for many HPC cenu·es t11roughout t11e world is t11at
tliey support not just t11eoretical physicists, chemists, and engineers but also a
broader constitllency tl1at includes geographers and social scientists wit11 suit
able applied problems. Indeed, it is probably wortl1 noting here that the only
real social science plus point at present is the growing belief (albeit held by
non-social scientists) tl1at in t11e near fomre an increasing number of super
computer applications will occur outside t11e traditional large supercomputer
using areas of ha.rd science . These new application areas are tl1ought Wcely to
relate to t11e commercial exploitation of HPC, where data müung linked to
large data •varehouse developments will need vast am01mts of computing
resources if t11ey are to be properly used (Small and Edelstein, 1997). Data
mÎl1Îng is currently of interest to large compa11Îes (telecommm1Îcations utilities,
banks, large retail chains, insurance comparues, etc.). The invesu11ents in creat
illg the data infrasu·ucttires are well advar1ced. Theü· hope now is t11at t11e
resulting data resources can be 'nuned' for new knowledge, lùdden patterns
and relationships that can be used to maxinùse profits, reduce waste, develop
new business and generally help large orgar1isations to compete ar1d survive in
tlie emerging IT age . There is also a great and pressü1g need to star·t to use for
botl1 blue skies research and application for more of t11e spatial data riches cre
ated by developments ü1 IT. Currently, it can be viewed as a crime t11at most
databases relevant to t11e public good (particular·ly related to healt11, wealtl1 and

46 High-performance computing applications in geography

crime) are not being analysed to any significant extent. HPC provides the
platform for doing it; what is currently missing are many of tl1e tools, the soft
ware, and a geographical analysis and modelling culture tl1at malces tl1e entire
enterprise worth while.

3 Parallel and high-performance
computing: concepts, principles
and theory

The next stage in understanding what HPC has to offer involves developing
knowledge of what t11e varions words and jargon mean. However, tins is not
about computer engineering trivia or computer science t11eory. It is about t11e
different types of parallel computing. There is a brief and simple look at
Amdahl's law and an even briefer look at tl1e historical setting witlnn winch tl1e
cmrent hardware is located. The single most important prerequisite is learning
how to tlnnk in a parallel way. Much of t11e chapter is concerned witl1 explaitnng
how to tlnnk parallel. Indeed, some will argue tl1at tlnnking or retlnnking serial
problem solving in a parallel way is simultaneously tl1e hardest and most fun part
of parallel programming.

3.1 What is parallel computing?

Parallel computing is no big deal! lt is merely t11e use of more tl1an one proces
sor to solve a problem. Nor is it a new idea. Almasi and Gottlieb (1989) write,
'Parallel processing is ready to happen. The demand is tl1ere, and now tl1e tech
nology is t11ere ... A new dimension is being opened. It's an exciting rime' (p.
v, preface). Indeed, a de cade la ter t11e same statement could still be made, ex ce pt
that now parallel processing is not only here but is also happe1nng on a large
scale . It is no longer promise but reality. It is also very exciting, since tl1e exist
ence of a rapidly spreading user-friendly and applicable parallel-computing tech
nology is one of tl1e most sig1nficant and far-reaching developments to have
occurred since tl1e invention of tl1e electro1nc computer. Parallel computing is
regarded as so important because it has t11e potential to improve performance,
reduce costs and increase productivit:y in a bewildering range of potential
application areas mat span ail subjects and cross most disciplines . Tins long
awaited revolution has finally happened and is still happe1nng! If you are going
to jump on to a bandwagon tl1en it is now a good rime to do so; tl1e risks are
greatly reduced and tl1e relevant skills well witlnn the reach of most geographers.

The basic driving force is t11e desire and prospect for lngher-performance
computers so tl1at users can solve bigger and bigger and bigger and bigger
problems. Hwang and Briggs (1984: p. 40) go so far as to daim:

48 Parallel and high-performance computing concepts

Fast and efficient computers are in high demand in many scientific, engi
neering, energy resource, medical, military, artificial intelligence, and basic
research areas ... Parallel processing computers are needed to meet these
demands . . . Without using superpower cornputers, man y of these challenges to
advance human civilisation could hardly be realised.

(Author's emphasis)

Weil maybe one day, possibly soon, reality will match the hype.
The idea is simple enough . If one parallel HPC machine is not fast enough

then turn it into just one node of a few thousand connected by a very high
speed network. This st:rategy is expected to deliver sustained teraflop-speed
hardware soon and petaflop not many years later. The general widely held belief
is that 'by the year 2000, parallel computing will be as mainsu·eam as personal
computers were in 1989' (Almasi and Gottlieb, 1989: p. L'I'.). This expectation is,
ind~ed, qtùte reasonable, although 2000 may well be 2010 or later. Parallel pro
cessmg offers more computing power, more memory and potentiaily a more
natural approach to problem solving by thinking about how to solve problems in
a parailel way. There is an argument that parailel problem solving is a more
natural approach and that serial computing has for far too long forced program
mers to shoe-horn naturally parailel problem solving into a serial format . It is
important therefore that geographers start to develop the new computer pro
gramming skills necessary to start to make good use of tlus core technology of
tl1e future available now.

So in principle parailel programming certainly sounds like a great idea.
Anyone who has ever written a program possessed of any degree of computa
tional complexity is sure to be interested in tl1e idea of ruruung tl1eir code on M
processors in 1/ Mtl1 of tl1e rime it would have talcen on one processor. Suddenly
computer runs on a workstation or PC tl1at could have talcen a year (if any users
had ever possessed sufficient patience and determination to wait tl1at long) can
now be completed in less tlun a day, and tl1e lutl1erto impossible computational
task becomes a practical everyday proposition. The only problem is how to do it
in reality? It is certainly an appealing prospect to have M separate CPUs all busily
working on tl1e same problem - just tlunk of all that computing power - but
how does it work? How does a simple-minded geographer corne to grips witl1
the challenges of parallel processing and parailel programming? One way is to
dash out and read several 'Parallel Processing' books written by computer scien
tists but, unless you are exu·emely lucky, tl1e effect will almost certainly be tl1e
equivalent to a cold shower of sufficient intensit:y to totally deter waverers and to
greatly dampen potential enthusiasts possessed of anytlung less than a steely
determination to persevere. Of course there is a catch. Writing software and
desig1ung algoritl1111s tlut work well on maclunes with multiple processors inside
tl~em need not be u·ivial or easy. However, tl1e problems can be explained
w1tl1out undue complexity, so read on - you have little to lose!

What is parall.el computing? 49

3.1.l What do the words mean?

Perhaps a useful starting point is to consider what tl1e words mean. There are
varions defuutions of tl1e tenn 'parallel computing', wluch ail have more or less
the same mea1ung. Parailel processing is self-evident . It is 'only' a matter of
getting multiple processors to work simultaneously on your program, which
previously had to malce do witl1 only one. More formal computer scientist-Wce

definitions are as follows.

Baker and Snutl1 (1996) would agree:
'Parailel computing is tl1e use of more tl1ai1 one Cenu·al Processing Unit
(CPU) at tl1e same rime to solve a single problem' (p. 1).

Chalmers and Tidmus (1996) write:
'Pai·allel processing is tl1e solution of a single problem by dividing it into a
number of sub-problems, each of wluch may be solved by a separate agent'

(p. 2).
Similarly, Chai1dy ai1d Taylor (1992) explain:

'A parallel program is simply a collection of co-operating programs tlut
togetl1er satisf)r a given specification' (p. 3) .

Almasi and Gottlieb (1989) explain tlut a pai·allel processor is
'A lai·ge collection of processing elements tlut cai1 commmucate and co
operate to solve lai·ge problems fast' (p. 5).

Hwai1g ai1d Briggs (1984) write
'Parallel processing is ai1 efficient form of information processing wluch
emphasises tl1e exploitation of concurrent events in tl1e computing process .
Concurrency implies pai·ailelism, simultaneity, ai1d pipelining' (p. 6);

wlllie Krishnamurtl1y (1989) writes
'A simple-minded approach to gain speed, as well as power, in computing is
tlu·ough parallelism; here many computers would work togetl1er, all simul
taneously executing some portions of a procedure used for solving a prob

lem' (p. 1).

The key common point is to note tlut parallel processing is tl1e solution of a
single problem by using more tl1an one processing element (or processor or
node or processing element or CPU). This feat cai1 be aclueved in various ways:
indeed, parallel programming is ail about discovering how to program a com
puter witl1 multiple CPUs in such a way tl1at tl1ey cai1 ail be used witl1 maximum
efficiency to solve the same problem. This is how we would defu1e it ai1d it is
good to know that tl1e experts all agree.

However, it is important not to overemphasise the parallel bit, because it is
not really all tlut novel or new! Indeed, parallelism is widely used, albeit on a
small scale, in mai1y computer systems tl1at would not normaily be regarded as
being parailel processor hardwai·e. Morse (1994) writes: 'Ifby parallel we meai1
concurrent or simultai1eous execution of distinct components tl1en every
machine from a $950 PC to a $30 million Cray C-90 has aspects of pai·ailelism'

50 Parallel and high-performance computing concepts

(p. 4). The key distinction is whether or not the parallelism is under the user's
control or is a totally u·ansparent (i.e . invisible) part of the hardware that you
have no explicit conu·ol over and probably do not know that it even exists. It is
only the former sort tl1at we need worry about since it is this wh.ich we would
like to believe is under our conu·ol.

3.1.2 Jargon I

Like many otl1er areas of technology, pa.rallel computing is a subject witl1 some
seemingly h.ighly mysterious jargon of its own. Yet it occurs so often tliat you
really do need to memorise at least some of it and either know in general tenns
what it ail means or know sufficient so tliat you may successfülly guess the rest.
There are the varions words or abbreviations tl1at previously you may have either
never corne across or never really understood what tl1ev mean. You will never be
able to join in the small talle at an HPC conference bar unless you master tl1e
basic vocabulary and terminology! So here goes.

The term 'HPC' .is very easy: it stands for high-performance computing
(or 'computer' depending on context), but the definition of what is 'h.igh
performance' is vague, relative and almost constantly changing as hardware con
tinues to improve. It is a characteristic feature tliat today's workstations now
offer levels of performance (or better) tlian only tl11·ee-five years ago required
exu·emely expensive HPC hardware in tl1e form of vector supercomputers.
According to Openshaw and Schmidt (1997), a Cray J90 (an HPC witl1 a
performance typical of early l 990s state-of-tl1e -art hardware) processor is slower
<rnd has less memory tl1ai1 a 1997 vintage Sun Ulu·aspai·c 170 workstation.

An HPC cai1 be used to refer to any vector or pai·allel computer tliat offers at
least one or two ai1d maybe soon tluee orders of magnitude more computational
power and memory tl1ai1 you are likely to get from a top-of-tl1e-range worksta
tion at any given moment in rime . So a supercomputer or super power computer
is merely an HPC! It is 'super' because compared witl1 'ordinary' computers it
runs much faster and has more memory. The Cray I vector supercomputer ran
between tllirt:y ai1d fifty rimes faster tl1an a large conventional mainframe when it
vvas launched in 1976. Twent:y years on and a Pentium II PC now does better
tl1ai1 a Cray I for much less tlian one-tl10usandtl1 of tl1e cost. Some people talle
about lligh-perforn1ai1ce PCs, but do not be so readily u·icked. The size ofprob
lem and tl1e computational load required by leading-edge scientific research ai1d
application also continues to keep pace witl1 HPC developments . The Cray I
based HPC problems located at tl1e rai·efied leading edge of science in 1976
could now easily be pai·t of a second-year undergraduate computing exercise!
Finally, ail tllings ai·e relative. In 1998, tl1e Cray T3E is probably at least 10,000
faster and bigger tl1an any so called lligh-performance PC. Such is progress.
However, it brings witl1 it a very serions problem: you can no longer run tl1e
same program on botl1 tl1e PC and tl1e Cray T3E. The code needs to be
changed for tl1e parallel machine. Additionally, tl1e next few orders of magnitude
of HPC speed-up will probably come only from increasingly complex parallel

Wlwt is paraltel. computing? 51

hardware . It will soon no longer be possible merely t~ sit back and by buying tl1e

1
t 11aclline every year or two gain a factor of t\vo m performance . Th ose easy

ares 1 r · · · d
· r·e 11ear·lv gone You could invest effort in periormaiKe opum1sauon an umes a ' , · . . .

ga.in ai1otJ1er few speed-up factors, but tl1e real ga111s 'Nill result from go111g

parallel.
So what does MPP or HPP stand for? Perhaps surprisingly, MPP ~oes not

mean massively powerfi.ù processor, altl1ough tl1at is a ve~y good descnpuon of
what tJ1e hardwai·e attempts to deliver. Currently, convenuon would suggest tl1at

ssivelv parallel processor (MPP) would have tens of tl1ousands of CPUs 111 a
a ma , 1 b . . d b
single system box. One view is tliat tl1ese real MPPs, p_er 1aps est ep1tom1se Y
tlle Connection Maclline (Hillis, 19 8 5), ai·e now exunct, al tl1ough tl1ey c~uld

11 be revived or rediscovered again at a later date. Instead, current leadmg
:v~ge maclline qualify more as highl)'. pai·allel ratl1er tl1ai1 massively p~ralle_l,
emphasising a coai·ser grain of parallehsm. However, tl1ese see~mngly ~ai more
modest machines in terms of tl1e numbers of CPUs tl1ey conta111 are sull called
MPPs! Additionally, a highly pai·allel processor (HPP) would probably have
bet\Veen 16- 32 ai1d a few tl10usand individual CPUs (usually a power of2, ~uch
as 1024). Then to make matters worse 'massively' ai1d 'llighly' ai·e vai·1able
ratller tJ1an absolute terms. Most people use tl1em interchangeably! Ah well, at

least now you know. . .
'Concurrency' is an alternative term used to des cri be parallehsm, ai1d _ 1t ~an

be used interchangeably, depending on your preference. 'Mult1process111g lS

anotller word witl1 a sinlilar mea11Îng. Su·ictly, it refers to tl1e execution of 111de
pendent tasks on multiple processors (also called multi-tasking), but tl1en lS tl1at

not what parallel processing is ail about!
Other terms tliat ai·e often used interchai1geably ai·e processor, CPU (cenu·al

processing mut) , u11Îprocessor, nlicroprocessor node and p~·ocessing tulÎt or_ele
ment. It is easiest to assume that tl1ey all mean tl1e same tlung - a self-contained
computer (usually on a single cllip) - and ignore tl1e bewildering complexity

caused by seeking ai1y more accurate degree of clarification.

3.1.3 Jargon II

More basic terminology follows . Sorne key defulitions of measurements witl1
tl1eir abbreviations may also be helpfol when attempting to understand tl1e
exu·emes of HPC; see Table 3.1. Typically today, a grai1d challenge problen~ 111
science is currently regarded as one requiring a sustained number-crunc111ng
power ofover 1 Tflop or 1 teraflop or 1012 floating-point operations (e.g. 1 flop
= 1 add or multiplication operation) per second and address computer memory
spaces of 1 Tbyte or 1 terabyte or 1011 bytes of computer mem~ry; or some
large fraction tl1ereof (note tl1at 32 or 64 bits, i.e . 4 or 8 bytes, lS needed to
store a single floating-point number). To put tllis into perspec~ve, a 64-Mbyte
memory workstation (1995 vintage) wmùd be about 100,000 umes slower '.1nd
have a memory space 15,000 rimes smaller tl1ai1 a 1-Tflop and 1-Tbyte mach111e.
At tl1e rime of writing, tl1ese Tflop machines do not qui te yet ex.ist, but tlKy ai·e

52 Parallel and high-performance computing concepts

Table 3.1 Some basic definitions and abbreviations.

Abbreviation

Mflop

Gflop

Tflop

Mbytes

Gbytes

Tbytes

Full tenn

megaflop

gigaflop

teraflop

megabytes

gigabytes

terabytes

Notes: Some useful prefixes.
mega = a million
giga = a thousand million
tera = a million million

Explanation

1 million floating-point operations per second

1000 million floating-point operations per second

1 million million floating-point operations per second

1 million bytes of computer memory

1000 million bytes of computer memory

1 million million bytes of computer memory

expected soon. It is anticipated that these supercomputers will be highly parallel
with a few thousands of processors . The notion of a teraflop (please note: not
terror flop as no doubt social theory-rich but data- and computing-free geogra
phers will term it once they discover what the word means!) geography is some
thing that forward-looking geographers sho1ùd be eagerly anticipating. As GIS
moves on beyond data storage and manip1ùation to proper analysis and model
ling, it will need it! The research challenge for the near future is how to use
multi Tflop computing hardware as a tool in geography? What problems actually
need this amount of computer power? What software development and research
can be done with scaled-down problems with current hardware?

3.2 Why parallel processing is important

3.2.1 Driving factors

The motivation for parallel computing is the need for bigger and faster
computers. Historically, the impetus came from

1 the need to solve large problems that ran too slowly even on the fastest vec
tor supercomputers; for example, varions military, weather forecasting and
scientific engineering applications;

2 to taclde problems too large for any other sort of computer; and
3 to provide more cost-effective solutions to problems that could be solved,

albeit on more expensive hardware.

In science, dus reflects the increasing adoption of a numerical and computa
tional approach to performing experiments as a substitute for laboratory experi
ments and building prototypes, both of which are either very expensive or too
hard to const:ruct. In many areas of computational science the quality of the
results (and hence the science) strongly depends on the amount of processor
power available. In geography and the social sciences, there are broadly equiva-

Why parallel processing is important 53

lent needs but also some very different ones related to the difficulty of studying
and modelling the behaviour of people systems and the growing importance of
data mining <md other inductive approaches to knowledge discovery. As HPC
becomes faster and bigger so new approaches and new geocomputational para
digms vvill appeai· (see Chapter 2) that will create new reseai·ch ai1d application
opportunities. Most of which do not yet exist. However, after a while it is no
longer cleai· who is clriving what! The quest for faster ai1d bigger computers
seems to have developed a momentum of its own. As computer speeds <md sizes
increase so does their importai1Ce, the ai·eas of application increase, ai1d everyone
wants more! Most users, it seems, ai·e merely responding to the available op
portunities, which are themselves a reflection of previous user ne~ds plus a bit
more. While users are undeniably grateful that these ever-expanding hai·dware
opportunities exist, seemi.ngly it is probably not the users ai1y longer who ai-e the
driving force. Once it was the military (nucleai· weapons design ai1d wai·head
re-enu·y dynamics) ai1d the needs of cryptographers (national security monitor
ing of coded telecommunications u·affic). Today, it is still the needs of the mili
tary (sim1ùation of nuclear explosions as a substitute for live testing) that is
encouraging the US Accelerated Strategic Computing Initiative (ASCI). There
are plai1s for 3+ Tflops systems by 2001 a.L1d 10+ Tflops for 2004, compai·ed
with current 1998 systems running at about 0.5 Tflops. A most dramatic per
formance when it materialises. However, there is also an increasing number of
scientific applications waiting to use the faster hardware . There is Jess doubt thai1
at any rime previously that there is a real commercial payback from both the
basic research ai1d more purely commercial activities. Examples would include
the creation of new materials and chemicals, safer plai1es, car crash testing lead

ing to safer car designs, ai1d data warehousing.
Another crucial factor in the recent history of HPC was the end of the Cold

Warin the late 1980s. This was initialiy responsible for the demise of several of
the HPC vendors and slowed the pace of new hardware development for a
while. However, the quest for speed is seemingly unstoppable, even though the
world market for leading-edge machines is surprisingly small. Most advanced
counu·ies have only a few! Many commercial organisations are more interested
in parallel database hai·dware optimised for transaction processes a.L1d SQL
queries than in more general-purpose pai·allel processors. However, tlus may be
a u·ai1sitory feature, because tl1e effective use, data milung ai1d modelling of tera
byte data.bases will almost certainly require HPC witl1 a vast number-crunclung
and database-processi11g capability. At present, tl1ese t\vo features are largely
mdependent atu-ibutes served by different hardwai·e. Combine tl1em and add a
real-time ai1alysis or modellll1g or fraud prediction/ detection component ai1d
the potential attraction of holding your terabyte databases in memory on a mas
sively powerftù HPC could become more apparent. However, even in a research
context tl1e number of HPCs is far smaller tl1ai1 might have been expected. For
some reason, science is quite happy to spend .l200 million on a single space
probe (wluch may weli fa.il on launch) but find it hard to spend even .l20 million
on a new HPC? Agai11 for reasons related to legacy tlunking and i11ertia, HPC

54 Parallel and high-performance computing concepts

popularity has still not reached all areas of science . Given the choice between
computer experimentation by simulation or experimentation by building hard
ware, too many scientists still prefer the latter. Critics argue, 'What is the point
in watching a computer animation of structures that can be directly observed via
some leading-edge microscope?' Weil maybe tl1ey are missing t11e point!
Nevert11eless, HPC is still (amazingly) a minority sport. For instance, t11e UK's
science community has in 1997 one large Cray T3D (tl1ree years old), a small
T3E, a few Cray J90s and one ageing Fujitsu VPX240. That is really not much.
One explanation is tl1at tl1ere is still resistance to computational science, anotl1er
is tl1at in 1997 in tl1e UK, apart from tl1e Cray T3D and T3E, you could prob
ably do almost as well using networks of fast workstations.

The marketplace is still small and congested, yet t11e quest for faster and big
ger HPC seems set to continue unabated. Currently, t11e race is on for tl1e
Everest of t11e HPC world, tl1e first teraflop machine tlut really does run useful
user code at t11at speed. These machines and tl1eir successors will reopen t11e gap
bet:ween workstations and supercomputers and may well encourage a new burst
of parallel programming activit:y in tl1e early years of tl1e next century.

So who or what is tl1e real clriving force ? We do not tlùnk tl1at anyone really
knows. After all, we live in an IT age where tl1e pace of innovation and develop
ment appears to be almost constantly increasing at a linear or superlinear rate.
Geographers, too, are being influenced by an almost perpetual maelstrom of
change. Here also tl1e feasibility of new and more computationally intense
approaches is entirely dependent on tl1e availabilit:y of very fast and very large
computing systems. Soon tl1ere will be sufficient computing resources to pernùt
tl1e emergence of feasible computational grand challenges in human geography
and many social sciences on a par witl1 t11ose of tl1e physical sciences. At first
such applications will appear nove! and leading-edge, t11en t11ey will be accepted
and taken for granted, and later surpassed by otl1ers we cannot as yet envisage in
any great detail. Speculations can be made tlrnt tl1ese may possibly include:

1 modelling more and more aspects of t11e behaviour and dynamics of people;
2 better spatio-temporal forecasting of socio-economic systems;
3 policy impact prediction on people modelled at tl1e micro level ;
4 large-scale locational optimisation of key public and private facilities under

environmental const:raints;
5 automated m01ùtoring of public healtl1 and disease databases for advance

warning of problems;
6 better plamùng models (everyvvhere);
7 automated real-time analysis of key databases;
8 flexible and safe geograplùcal reporting of personal data;
9 major criminal investigations; and

10 vastly improved financial modelling of national economies.

The only good aspect to note here is t11at tl1ere are no significant amounts of
legacy codes to port.

Why parallel processing is important 55

3.2.2 The quest for speed

lt is important to appreciate t11at parallel computing is interest'.ng becaus~ it
romises faster computing and far larger memones spaces tha'.1 senal com~utmg

p d not just because it is parallel perse. Indeed, to be suffic1ently attractive. to
~11

·i; tlle effort in users \eanùng new programming skills and in redevelopmg
JUStJ, l . all 1 . . l T t
their code and algorit11111s for parallel env1ronments, par, e processors 1a' e o
be able to offer sigiùficantly better performance if tl1ey are to attI"act more t11a11

fevv users. That point has now been reached.
a There ,u·e a number of reasons why parallel processing is important from a

user's point of view:

1 There are limits to the ultimate performance of serial or single-CPU
computers (due to tl1e speed of light, quant.um effects, performai1C~. bottle
necks in tl1eir design), and it is likely t11ese 111111ts may be reached fauly soon

(wit11in a decade) .

2 There ai·e important problems such as grand challenge problems that
require large-scale computation for their solution and t11at ca1111ot now be

solved by a11y ot11er means.

3 Pai·allel processing provides a means of attaiiùng faster computing at an

affordable price. .
Faster serial processors merely make an even faster multi-processor maclune 4

5
built from t11em.
Finally, parallel processing is unavoidably t11e future of HPC.

There is now a growing consensus tlrnt pai·allel processing is an inevitable and,
for at least some of us, an unavoidable, teclmology. It is the future of large-scale
computation, at least for t11e next few decades until . ot11er types of non
conventional , perhaps biological or molecular, computing machmes can be

invented and built.

3.2.3 The inevitability of parai/el processing

Morse (1994) offers four reasons for tl1e inevitability of the eve1~tual and wide
spread use of pai·allel processing. These have been developed furtl1er and are

expanded below.

Barriers to cloclz rates

Crudely put, t11e speed of a computer depends on its dock speed. These h~ve
increased rapidly as microprocessor designs have become more dense. Spee.ding
up bas been aclùeved by putting more components doser together on a smgle
chip. Indeed, over t11e last decade it has been possible to obtam faster l~ardware
b ·di tl Il d 'CMOS bo\V wa\re' In addition superscalar designs that y n ng 1e so-ca e · - , · ' .
can deliver two or t11ree arit11metic results per dock cycle, multi -level caches,

56 Parallel ancl high-performance computing concepts

improved compilers designed for RISC hardware (for example vvith predictive
branching) have provided additional speed improvements of rwo or three rimes.
These developments combined with faster dock rates have delayed the intro
duction of parallel machines, because users could gain quite large performance
increases without it. The problem is that there are real upper limits on chip dock
speeds and on the extent of these improvements likely to be possible with exist
ing technologies. Current technology is getting near to these limits . Once dock
rates go well above .1000 MHz (a billion dock rides per second) then probably
the. only way of bmlding faster computers is to have multiple processors. It is
unlikely that ~fordable 2?00 MHz chips can be mass produced using existing
tedrnology w1thout multiple technical breakthroughs, perhaps involving the
development of a quantum processor. However, it would be fairly easy to attain
2000 MHz by using t\vo chips, each of 1000 MHz.

System reliability

Parallel processors should be more reliable than large single processors because
they use reliable mass-produced microprocessors rather than small-volume
hi~lll~ . customised chip sets. Fewer chips inside processors generally increase
rehab1lity because there is Jess to go wrong. Slower dock speeds cause less sti·ess
on chip designs, while relatively modest power and less heat result in longer life
and greater reliability.

Redundancy in design

This could be used to increase the reliability of parallel machines, although at
present the reliability of a machine with 256 CPUs may well be less than a
'.nadùne with 011.ly one because the risk of any one of the 256 developing a fault
m. a.given rime period is far higher than the risk that any particular processor will
fail 111 the same period.

Memory bandwidth

This limits the performance of mùprocessors or parallel machines with only a few
processors . The performance of a madùne depends not just on processor speed
bu~ also on memory accessing (read/write) speeds. The problem here is that lùs
toncally processor speeds have increased far more quiddy than memory access
speeds. Men~ory is now a slow device compared with processor speeds and rep
resents a ma1or consti·aint on processor performances with user code . A simple
rule of thumb suggests that typically two words of data from memory need to be
accessed for each floating-point operation. As floating-point arithmetic speeds
double memory speeds probably need to quadruple! Unfortunately, over the last
ten years or so the reverse has been happe1ùng, and the situation is becoming
worse. In five- ten years rime the five- tenfold increase in memory read/write
speeds w1ll be more than offset by the ten- to 100-fold increase in processor

Higlily ancl massive/y parallel processing 57

ds One solution is to parallelise memory access by disti·ibuting the memory spee
to the processors . Tlùs is an elegant solution but 1t causes other problems, smce
each processor can only access its local memory quiddy and 1:eeds longer to
access memory held by other processors. Different madune architectures handle

dus problem with different levels of efficiency.

Cost-perfor1nance is greatly irnproved

The nùcroprocessors used in many parallel systems come 'free' because they are
developed for a mass market and not purely for a 1ùche HPC sector. Indeed,
there bas been such a vast investi11ent in the development of fast-processor tec~1-
nology because of the emergence of mass mai·kets for them: for example, 111

a111es consoles embedded controllers in consumer products, persona! com-
g) . . tl .
puters, multimedia, etc. For example, 1t has been estim~ted tl1at 1e. Penti~m
ai1d Alpha dùps cost much tl1e same to develop as the lughly custom1sed Cray
J90 dùps . However, tl1ese development costs. are sprea~ over a mass mar~cet,
producing an invisible but major benefit to bmlders of lughly parallel machmes
that use tl1ese components. Scalability is possible in tl1at more power and/ or
memory merely requires more processors to be added, wlùle faster individual

microprocessors produce even faster MPPs or HPPs.

In short, if we wai1t continually faster computers tl1en going parallel is soon

going to be tl1e 011.ly way of achieving tlùs goal.

3.3 Highly and massively parallel processing

3.3.l Building faster machines

From a fairly simple-minded point of view tl1e tl1eoretical total pealc power of a
parallel machine is found by multiplying tl1e speed of a single processor by tl1e
number of processors. A less simple-nùnded approach would argue tlrnt peak
Mflops is not a useful measure of madùne power, since most user applications
will run at only 10 to 50 per cent of peak. Or as one cynic explained, pe~c
megaflops (Mflops) is tl1at rate which tl1e dùp manufacturer g1~ai·ant~es w1ll
never be exceeded by ai1y user's job! However, let us ignore tlus dist1·act1on ai1d
briefly exairune tl1e challenge of building supercomputers . Morse (1994) notes:
'In general, massively pai·allel approaches adùeve lùgh process~ng rates by assem
bling large numbers of relatively slow processors' (p. 4), wluch, he cou~d have
added, are cheap ai1d mass produced. Consider the problems of b1lll~g a 1
gigaflop (Gflop) computer. You should know by now that 1 Gflop 1s 1000
million floating-point operations per second. Table 3.2 outlines some of the
alternatives. Note how much easier it is to adopt tl1e multi-processor route
because tl1C speed of tl1e individual CPUs becomes less as tl1eir numbers
increase. This argument assumes that programs can be written tl1at can fully
utilise multiple CPUs witl1 100 percent efficiency to perform the same amount

58 Paral/.el and high-performance computing concepts

Table 3.2 How to build a 1 Gflop computer(= 1000 Mflops).

se rial
parallel
highly parallel processor (HPP)

massively parallel processors (MPP)

Nu1nber of processors Speed per processor (Mflops)

1
10

100
1000

10,000

1000
100

10
1
0.1

~f_work in a c01:current manner as that perforrned by a single CPU. In practice,
~t is not as stra1ghtforward as this table implies, because processor speeds also
mfluence the granularity of the parallelisation task. It also assumes that a micro
processor rated ~t 100 million flops can actually achieve this on code written by
a typICal user us11:g real data, so maybe it is safe to divide the theoretical pealc
speed by at least four. However, this does little damage to tl1e general argument
being made here .
-~onsider now tl:e proble1:1 of creating a 1-Tflop computer. One teraflop is a

million floatmg-pomt operatlons per second. Table 3.3 shows how tllis could be
built via a parallel ~pproach. Note tl1at now a single-processor option is prob
ably no longer feas1ble. If you are not convinced then as pmlishment examine
t11e following fragment of FortI·an program, wllich you will not be able to run
on any e:xisti.ng computer anywhere in the world today.

REAL X (1 000 000 000 000), Y (1 000 000 000 000), z (1 000 000 000 000)

DO I 1, 1 000 000 000 000

Z(I) X(I) + Y(I)

END DO

Here there are three tI·illion numbers (1,000,000,000,000) stored in memory
(as arrays X, Y and Z) and a tI·illion adds to perform, which is why it cannot yet
be run. Cons1der now how to build a computer fast enough and witl1 sufficient
memory to run tllis problem in 1 second (which would make it a 1 Tflop
maclune) . Demmel (1996: pp . 3-4) explains it like tllis:

The speed of light is an intI·insic limitation to tl1e speed of computers.
Suppose we wanted to build a completely sequential computer witl1 1
Terabyte of memory rumling at 1 Teraflop. If the data has to tI·avel a distance
r to get from t11e memory to t11e CPU, and it has to tI·avel this distance 1O 12

rimes per second at t11e speed of light c = 3e8 m/s, tI1en r < = c/ 1012
= 0.3

mm. So t11e computer has to fit into a box 0.3 mm on a side. Now consider
Terabyte memory. Memory is conventionally built as a planar grid of bits in
our case say a 10

6
by 10

6
grid of words. If tllis grid is 0.3 mm by 0.3 n~m,

then _one word of memory occupies about 3 AngstI·oms by 3 A.ngstI·oms, or
the s1ze of a small atom . It is hard to imagine where the wires would go!

Highly and massive/y paraltel. processing 59

Table 3.3 How to build a 1 Tflop computer(= 1 million Mflops).

serial
parallel
highly parallel processor (HPP)

111assively parnllel processors (MPP)

Nmnber of processors Speed per processor (Mflops)

1
10

100
1000

10,000

1,000,000
100,000

10,000
1000

100

It is ,tlso unlikely that memories of tl1is size and density could be built in t11e
near future (or at ail) based on current technology. On the otl1er hand, as Table
3. 3 suggests, building 1-Tflop computers is probably witllin reach now via a par
allel processor route. It would certainly appeai· feasible to t11ink of a machine
witl1 1000 processors operating together to run the code fragment.

So it appears that t11e immediate future of HPC is t11erefore unavoidably pai·
allel, and as rime goes on so the numbers of parallel cornputers will increase.
There is no alternative unless practicable quantum computers can be built tl1at
are capable of solving HPC problems or some ot11er basis for computing is
discovered (viz. biophysical). In both cases, research and development ri.mes
would be sufficiently long not to harm your investI11ent in conventional HPC
skills. Even then, t11ey will have to be programmed with interfaces to current
parallel codes. So learning how to program current parallel machines is essential
as well as a safe investment for t11e future. Those geographers who do so eai·ly
rnay well gain sig1lificant benefits la ter on when t11e long-awaited age of parallel
computers finally dawns ai1d a Tflop-processor-pmvered geography becomes a

practical proposition.

3.3.2 A tarnished past

It is a sobering thought that none of tl1is 'tl1e future is parallel' argument is tl1at
new. It was fervently believed in by some parallel computer missionaries over
tl1irty years ago when the world's first real pai·allel supercomputer (tlie ILLlAC
IV) was built (in 1967), albeit forced to use hardware technology t11at was quite
inadequate for t11e design concepts. Similar daims that t11e future is parallel were
repeated t\;venty yeai·s ago, and it has been fasllionable in a few quarters ever
since. The problem was t11at mliprocessor speeds continued to increase, and the
physical limits inherent in t11eir design t11en seerned much further away t11an t11ey
do now. As a result, the immediate need for pai·allelism turned out to be less
tl1an had been expected, while t11e 'promise' of t11e technology turned out to be
far harder to deliver than many once believed. The dreams of t11e late l 980s pai·
allel computi.ng salesmen never really rnaterialised. There were also various good
excuses for wishing to delay tl1e onset of a parallel programming future. There
were, and sti.11 are, a number of obstacles. In particulai·, t11ere is market resistance
to MPP even witllin t11e HPC world. Quite naturally, users with long or complex

60 Parallel and high-pe1formance computing concepts

codes developed over many years for vector supercomputers are reluctant to
have to stop their science while they try to recode them for parallel hardware.
They fear cost, delays a1:~ the need to invent new algorithms, and until recently
doubts about code stab1bty and tl1e longevity of this or tl1at species of parallei
computer. It was always easier merely to ask for a new Cray vector supercom
puter every mree years or so and mus postpone tl1e untlùnkable a little longer.
There are _also perceptions of immaturity and an awareness of tl1e potential dan
gers -~f bemg at (or beyond) tl1e fringe or frontiers of computing does not help.
Addi~on~y, tl1ere 1s a track record of failed parallel processing promises, tales of
practJcal 1mplementation problems and also many misconceptions.
M~rse (1_994) u~es tl1e following joke to illustJ·ate some of tl1ese problems. He

asks What 1s tl1e d1fference between a used car salesman and an MPP salesman?'
The answer is: 'tl1e used car salesman knows when be is Jying!' Bell (1994) refers
to t11e four 'fiat tyres' of tl1e parallel bandwagon caused by Jack of systems
~oftware, slulled progran:mers, good heuristics for tl1e design of parallel algor-
1tl1ms, and good parallelisable applications. Healey et al. (1998) added a fifth·
namely commercial failures among parallel hardware vendors, which damag~
u_ser confidence. _Ho~ever, tl1e 1990s bas also wirnessed an immense maturity of
virtually everytlung m tl1e parallel processing arena, and it is now (in tl1e late
1990s) a much more stable domain. Most of tl1e problems of tl1e past no longer
apply, and tl1e cosy wo'.·ld of rumùng old code on new generations of bigger and
faster v~ctor m~clunes 1s about to end. There is also a wider appreciation tlrnt an
MPP w1th relaavely few processors soon starts to equal a vector supercomputer.
Suppose tlrnt a two-pr?cessor Cray T3E equals a one-processor Cray Y-MP, ilien
a_ 512-processor T3E 1s equivalent to 256 Cray Y-MPs and yet costs only a few
tJmes as much as a single Cray Y-MP.

Nevertheless, one common misconception continues unabated. Tlùs concerns
tl1e belief tlrnt MPP can deal witl1 only certain classes of highly specialised prob
lem, so the teclmology is not more generally useful or general-purpose. If t11is
were a·ue tl1en it would, indeed, be of interest only to a handful of users witl1
fai_rl~ es?teric problems, and few problems would ever run efficiently. However,
iliis 1s s1mply not tl1e case . Morse (1994) notes tl1at: 'Over tl1e past 10 years,
~PPs have been programmed - efficiently programmed - for applications in
virtually every area of interest to both the research and commercial worlds. It
would ?e far mo'.·e difficult, in 1994, to list applications not suitable for parallel
processmg (prov1ded only tl1at tl1e problem size is sufficiently large) tlrnn me
reverse' (p. 13). Maybe it should be added tl1at it is only since about 1994 (tl1e
Cray T3D marked the begim1Î!1g of a new more mature era of parallel proces
sors) t11at ~pp bas really matured and started to deliver tl1e performance it
alway~ prom1sed but never quite managed. Also, tl1e gap between what parallel
machmes cai~ deliver and otl1er types of more tJ·aditional supercomputer bas
star_ted to w1d_en. MPP bas caught up and overtal<en otl1er approaches to
achievmg practJcal ai1d useful HPC at an economic and affordable price.

Highl)' and massively parallel processing 61

3.3.3 Ongoing problems

MPP is not witl10ut its own very special list of problems.

1 The small installed base ai1d a small market shai·e may malce access to
leading-edge hardware difficult at present. It is rationed ai1d oversubscribed;
for example, it wmùd have been easy in 1996-97 to 'blow' the entire UK
social science share of the Cray T3D on a single run of a mode! breeding
machine (Turton et al., 1996) .

2 The potentially high cost of porting legacy serial code is ai1other major disin
centive. In tl1e UK, tl1e EPSRC's High-Performance Computing Initiative
(1994-97) spent over [,2 million encouraging tl1e porting of serial and vec
tor codes on to the Cray T3D to try to weai1 researchers off vector super
computing. It worked, ai1d tlùs book is one of tl1e u11Întended by-products.

3 Porting cai1 be lengthy, cost:ly ai1d risky: a task not helped by an earlier Jack
ofparallel programming standards. Indeed, it is only in tl1e mid-1990s mat
vendor-independent ai1d hardware-independent stai1dards have started to
appear, such as tl1e message-passing interface (MPI) standai·d ai1d also ilie
highly pai·allel Fora·an (HPF) specification, in place of a previous mishmash
of vendor-specific librai·ies and ad hoc compiler extensions tl1at previously
held back progress towards a real standard ai1d rendered most code non
portable ai1d tied to tlüs or tlrnt soon-to-be-obsolete machine.

4 Much existing code is performaiKe-optimised for particular hardwai·e ai1d
may need recoding for different machines. When dealing with grand chal
lenge projects or otl1er urgent computing tasks, it is always tempting to sac
rifice portability for an exa·a few percentage points of efficiency. However,
tl1ere is a growing recog1ütion by indusa·y and academic funding bodies
that skilled programmer time costs far more tlrnn machine time, even for t:l1e
biggest supercomputers, and tl1at portability of code is exa·emely importai1t
for tl1ose applications mat warrant it.

5 Validation of results is importai1t. Pai·allel processor results should be iden
tical to tl10se produced by tl1e serial code and serial algoritl1m, but if tl1ere
are differences tl1en which one is correct? It is often hard to verify or
corroborate results tlrnt can only be produced by leading-edge pai·allel
maclünes, as pai·allel machines cai1 create a whole set of software 'bugs' tlrnt
exist only in a parallel world. Parallel bug extermination is not always easy or
speedy, or guarai1teed.

6 Vendor instabilit:y is a problem in t:l1e field of HPC. There is a lùstory of
lùgh mortality rates, and lùstorically t:l1ere has been a lùgh risk of wasted
investment in porting code to yet ai10tl1er about to become defunct
maclüne . Short machine life expectaiKy is ai1ot:l1er problem. Most leading
edge parallel maclùnes last tl1ree yeai·s or Jess before being made obsolete by
advances in technology. The ai1swer is to write portable code and avoid any
tlüng tlrnt ties you to a specific mode! of a partictùar maclùne, unless of
course the application is never, ever again going to be repeated.

62 Parall.el. ancl high-performance computing concepts

7 Where is the geography MPP software coming from? The new parallel soft
ware packages that are needed before many geographers can start to make
use of the power of the parallel machines that are now available will have to
be written by geographical users. This is because only geographers are best
equipped to recognise the potential parallelism of geographical problems.
There will obviously be a place for computer science-based paraUel pro
grammers to do some of the work, but much of the proof of concept work,
the awareness raising and the initial developments will need to be tmder
talcen as 'blue sky' research before the rest of the geography and computer
programming world will talce notice. Hopefully, this book will help with
some parts of this task. This section also begs the question, what sort of
geography codes (1) actually need HPC and (2) have a large set of poten
tial or real users. One answer is the generic geographical analysis and mod
elling applications cliscussed in Chapter 1. Ideally, these facilities need to be
accessible over the Internet. Prototype systems already exist; see Openshaw
et al. (1998) .

8 Thin.king paraUel is not particularly easy, at least initiaUy. Nevertheless, it
does present some interesting intellectual challenges and could easily
become an obsession. This book seeks to help you gain these particular
skills.

The good news is that (1) many of these problems are not relevant in a geo
graphical or GIS context and (2) by being late entrants in this area geographers
have unwittingly avoided many of the problems that afflicted other physical
sciences that began their parallel processing era a decade or more aga. ParaUel
programming is now far easier and it continues to become easier ail the rime.
Furthermore, a significant fraction of the scientific HPC community do not
write their own code but use a relatively small number of codes to do their
science. They use HPC because the sofüvare they use bas been ported there and
they can justify the need for additional computational power by the science they
do. As new machines appeai· so these codes are ported ai1d seem to achieve
considerable longevity. Potentially, the same is also true of geography, GIS, and
the social sciences. Their own HPC culture could be 'kick-started' by making
generic and widely useful code available . Maybe the programs associated with
this book will help to do this, but there need to be others as well.

3.4 Examples of thinking in parallel

To run your code on a parallel machine or to write code for a parallel machine
you need to think about how the algorithrn (that the code represents) can be
split into pieces that can be run concurrently. Pai·allel programming is essentially
a clivide-and-conqueror approach to programming tasks. Yet this seerningly
simple task is made hai·d because rnost programmers are u·ained to tl1ink in a
highly serial way. In essence, you will need to 'reprogram' your mvn thinking and
problem-solving procedures to become parallel before you can start rewriting

Examples of tliinking in paraflel 63

your codes. It is not particulai·ly clifficult once you get goin_g. So let us co1~sider
some examples of parallel algoritl1ms tlnt may help to stmmlate the parallel-

thinking neurons in your head!

3.4.1 Example 1: emptying a swimming pool using buclzets

Suppose tl1ere is a swimming pool tl1at is_ full of :vater. Furtl1er, let us assume
tl1at a single persan with a single bucket w1ll take urne T to complete tl1e task of
emptying it. Now imagine how long it may talce t:wo persans to perform _ tl1e
same amount of work. They may manage it in time T/2, and N persans m1ght
be expected to do it in T / N. The pool is of a fini te. size and contams Z ~ucket~
worth so would tl1e quickest emptymg urne be aclueved if Z people were used.
Almos't certainly not! It is clearly a pai·aUel task (since in tl1eory each bucket
carrying persan cai1 operate independently in parallel), _but tl1ere are vanous
possible inefficiencies in tl1e system, which meai1s that_ tt 1s not as 100 p_er cent
scaleable pai·aUel as it may at first appeai· to be. These 111effic1enc1es may mclude
delays or overheads due to congestion in gaining access to or from the pool, tl1e
need to avoid collisions, bucket dropping, people who work at clifferent speeds,
clifficulty of access to tl1e water in tl1e pool as tl1e level falls <md even_ tl~e capac
ity of drain into which tl1e buckets are emptied. So there is an upper li'.111t on tl1e
number of people who can be used: more people may not necessanly mean a
better performailCe, which could easily reach a pealc ~1en detenorate. Tl:e moral
of tllis particular story is tlnt any problem cai1 be cliv1ded mto only a fimte num
ber of subtasks or subproblems, each of which corresponds to tl1e smallest task
tllat can be run in parallel or concurrently witlrnut suffering fron: interacuon
effects of one form or ai10tl1er. As a result , tl1ere may well be an opumal numb~r
of subtasks before performai1ce stai·ts to deteriorate. There may also be an optl
mal size for each of tl1e subtasks. These features recur later.

3.4.2 Example 2: clearing a room containing 100 chairs

This is another pai·allel task, but here there is an easily defined upper limit oHOO
persans who catl work on it (i.e. each person would have exactl): one cl:air to
carry) unless of course tl1e chairs are pai·ticulai·ly heavy. However, 111 pract:Ice tl1e
optimal number may once again be fai· smaller due to congest:Ion delays, lack of
manoeuvring space and the bottleneck created by queues m tl1e doorway.
Indeed, tl1e optimal number of chair carriers could be considerably small~r tlnn
100, perhaps as small as two . On tl1e otl1er hai1d, it would be p~ss1ble to
imagine a situation in which tl1e chair cai-riers might be so well orgaius~d ~s to
form a chain or line of chair (or indeed bucket) passers, wluch would elimmate
congestion effects ai1d maximise efficiency. If you cai1 figure out ho_w best to
achieve atl optimal result by devising an appropriately parallel algontl1111 then
clearly you are well on your way towai·ds being able to tl1ink in pai·allel!

64 Paral/.el. and high-performance computing concepts

3.4.3 Example 3: not all taslis are parallelisable!

Ifyour defuution of a task ca1111ot be broken down into subproblems d1at can be
executed in parallel d1en it is not parallelisable. Your 01ùy hope now is to change
the task or alter d1e algorid1111 being used to solve it, but even d1en not all tasks
can be parallelised. Consider a dassical problem. If one woman talces ni.ne
mond1s to produce a baby, why cairnot iune women produce one baby in one
mond1? The answer is obvions: it is biologically impossible. However, ail is not
lost, because 1une women cmild produce iune babies in iune mond1s, giving an
average du·oughput of one baby per mond1! Indeed, dus is one of d1e simplest
types of parallelism. Replication requires no commmucation between d1e proces
sors ai1d no contention for resources . Therefore the speeding-up is almost
exacdy N rimes, albeit wid1 a latency of about iune mond1s before d1e first
'restilt' is obtained!

3.4.4 Example 4: building a skyscraper with 500 floors

Now consider how you might build d1e 500 floors of a skyscraper in parallel.
Clearly, d1e obvions answer of building each floor at d1e same time is impossible,
since you ca1111ot start work on d1e second floor until you have at least com
pleted d1e su·uctural frame for d1e first floor. One ai1swer would be to build d1e
floor su·ucture first and d1en fuush all 500 floors in pai·allel. A11od1er alternative
would be to build d1e skyscraper on its side ai1d d1en lever it upright when it is
fuushed! Maybe dus is ai1 example of the sort of exu·eme lateral dlliùci.ng you
may need in order to produce parallel solutions to some hard-to-pai·allelise
problems! There ai·e mai1y problems of skyscraper type where d1ere is a data
dependency. Tlus can cause serious problems for parallelisation attempts, ai1d
dus is one of d1e reasons you should not expect to see a compiler d1at does all
types of parallelisation automatically for you in d1e neai· future. You will prob
ably always have to do most of d1e really bard algoridu11 parallelisation design
work yourself, since 01ùy you may be smart enough (at present) to red1üùc d1e
problem or invent a new design for d1e algorid1111 drnt d1e program implements
in such a way that ail data dependencies are removed or at least gready reduced.
Yet experience suggests drnt even seenungly su·ongly serial algoritl1ms can be
redesigned as parallel ones, ald10ugh it is importai1t not to increase (by tao
much) the amount of work being done in order to adueve pai·allelism. The
pai·allel simulated annealing med10d used in zone design is a good example of
dus type ofsuccessful redesign; see Openshaw ai1d Schmidt (1996).

3.5 Can parallel machines ever be used efficiently?

Al10d1er potentially very serions constJ.·aint on d1e performance of parallel com
puters is provided by Al11dalù's law. Al11dalù (1967) daimed d1at it is impossible
to use lai·ge numbers ofprocessors efficiendy on a single problem. His ai·gument
is, or was, frequendy used, pai·ticularly by serial processor vendors, to prove d1at

Can paraUel machines ever be usecl efficiently? 65

1ere was no point in using hundreds of pro~essors to sol.ve a p~·oblem._ Alndalù
tl tl d · . f d1e IBM 360 series of mainframe ardutecture. La ter he went
was le es1gne1 o . fi 1 1 ad

' d · d ". dalù rai1ge of IBM plug-compatible mam rames, so le 1
on to es1gn le .cun . d b al
a strong vested interest in serial tedrnology ai1d m~ybe ,d11s nee s to ~ t cen
. ccount when examining lus arguments. He wntes, For a decade prophets
into a ·ced d1e contention d1at d1e orga1usation of a single computer has
have v01 b d ù , by d1e . 1 d ·ts limits ai1d d1at true sig1uficant advaiKes can e ma e 01) .
reac le 1 · 1 · to pernut
. .

1
ection of a mtiltiplicity of computers 111 suc 1 a mai111e1 as

mterc~rn. 1 u·o 1 Demonsu·ation is made of d1e continued validity of the
cooperauve so u r · · · il · 1 ·
. le processor approach and of d1e wealmess of d1e ml tJ.p e processor

smg_ 1 '' (48i) It is d1e sort of calculation d1at could have been done on
approac 1. p. · . . ·u · t nt
tl1e back of a proverbial beer mat but, neverd1eless, it is stJ. a very impor a

· · · of par·allel computing and deserves doser scruuny.
w~~ ' 1 t

In measuring d1e performance of parallel systems, there ai·e two cey _c01~cep 1 s
to consider: one is speed-up ai1d d1e other is efficiency. Speed-up 1s s1mp Y

defined as

T1/TN

where T1 is d1e time talcen to run a pro gram using mùy one processor, ~d T ~s
d1e time talcen by N processors working toged1er 111 a parallel c01:1puter. In l~
ideal situation, as N increases, d1e so-called elapsed or wall dock ume !N sl:o~
decrease by a factor of N. It is important to observe d1at wall dock ume is e
ela sed time since d1e start of d1e run. It is important not to. confuse w~ dod~
· p ·d d total pr·ocessing time This is d1e ammmt of ume each processor

ume Wl 1 le · . · ild b rd ·
was busy processing and on a multi-processor mach111e dus col e an) ung

N tJ.. the w'all clock time However, let us not dwell on total processor
up to mes · · d
time, since after ail dus is why you use ~n .MPP._ It is d1e wall dock ume _ ~

11 . Tl ·s is also d1e time meu1 c m wluch humans live. So be care
rea y matters. u al 1 d · d if
always to disentangle d1e total processor time fr?m d1e tot, e ~pse tJ.1~1~ an '
you use mùy d1e latter, dKn you will avoid gettJ.ng stuck 111 a ume warp ._ .

Scaleability is d1e speed-up of a program as the number of processors bem~
·d d al bil"ty dKre is a roughly lmear used increases. In a problem w1 1 goo se, ea 1 .

relationslup between elapsed time and d1e number of pro~e~sors b~mg us;~
Good scaleability implies an efficient use of processors, .and dus is .d1e dream ~ '
parallel algorid1111 designers. It may sometimes be possible to ~dueve a se~mmg\
mùilcely superlinear speed-up due to eid1er subde changes 111 d1~ effic1ency ~e
memory accessing or a more efficient performance of ~n al~ondu11alas bmil?r ,.

d I · c lgorithms aclueve linear sc ea 1t), processors are introduce · n pracuce, iew a . . , r
most reach an optimal level of performance and d1en detenorate (someames; ~ '!
rapidly). The challenge is to design parallel algorid1111s drnt are able to ex u it
linear speed-up now and on machines not yet built. Dream on! Note drnt

66 Parai.le/ and liigh-performance computing concepts

is the ideal case. Typically T1/TN will be Jess than N because of various ineffi
ciencies and less than perfect parallelisation of the code. Nevertheless, this
reduction ofwall dock rime as the number ofprocessors increase is the principal
reason why parallel processing is so important. Efficiency is the actual speed-up
on N processors compared with the ideal ma.ximum. Hence

efficiency = actual speed-up + ideal speed-up

which is the same as saying that efficiency eguals the speed-up on N processors
divided by N. A.mdalli (1967) caused a major stir because he suggested there is an
upper limit to the speed-up that can be obtained which is independent of the
number of processors being used . This independence aspect (if it occurs in prac
tice) indicated that parallel processing has no future as it means that it is not pos
sible to speed up an application indefinitely by using more and more processors .
Amdahl's concern is that as more and more processors are used the machine will
be used Jess and Jess efficiently. His argument is essentially tl1at the total run rime
of a program on a single processor can be divided into two components:

1 a non-parallelisable or serial part (T;;) and
2 a parallelisable part (Tr).

The total rime on one processor is tl1erefore

For N processors it is

It is 01liy when you plug some numbers into these eguations tl1at tl1e really
potentially devastating nature of Amdahl's law becomes apparent. If five
processors are used (N = 5), and suppose tlrnt T5 = 5 and Tr = 20, tl1en

Ts = T5 + (Tr/5)
T5 = 5+4
T5 = 9

So tl1e total wall dock rime for five processors is nine units, compared witl1 25 if
01liy one was used . The speed-up is T1/T5, which is 25/9 or 2 .67 rimes, whereas
tl1e maximum possible would have been five rimes. The percentage efficiency is
100 X 2.67 /5, or 56 per cent. In other words, tl1e machine is being used for
01liy 56 per cent of tl1e rime, and for tl1e remaining rime it has four id.le proces
sors. Now suppose we can increase N towards infinit)', tl1en efficiency goes to
zero and ma.\'.Îmum speed-up gets stuck at around five rimes since tl1e serial rime
remains constant and totally dominates tl1e run rime . Hence

T1000000 = Ts + 0
5

Can parallel machines ever be usecl effi cientl.y 67

Adding more processors cannot reduce T5• and tllis ends up as tl1e rime talcen by
t]1e total program. It is common sense, but if it happens in practice it is guite
devastating. Amdalli (1967) observed tlrnt for t)'pical Foru·an codes he looked at
in tl1e mid-1960s, tl1e Ts fraction was about 40 percent and tl1at tllis has prob
ably been constant for about ten years. Moreover, he argued tl1at it is lliglliy
improbable tl1at tllis serial part could be reduced by more th<rn a factor of tl11·ee
as it appears to be seguential and hence milikely to be amenable to parallel
processing ted111igues. He reasoned, tl1erefore, tlrnt 'tl1e effort expended on
adlieving lligh parallel processing rates is wasted mliess it is accompailied by
achievement in seguential processing rates of very nearly tl1e same 111ag11itude'
(p. 483). This is probably ai1 impossible task, ai1d based on tlus assumption it
can be argued tl1at pai·allel processors witl1 more tl1ai1 a small number of

processors can never be used efficiently.
Even worse follows. You can also compute tl1e ma.ximum speed-up for ai1y

given values T
5

and Tr. If Ts is 75 per cent, tl1e ma.ximum possible speed-up
is four rimes regardless ofhow many processors you use. Now suppose tl1at T5 is
only 1 percent and N = 1000, tl1en tl1e ma.ximum possible speed-up is Jess tl1an
91 rimes! If T

5
is 99 percent ai1d N is 10,000 tl1e maximum speed-up is still 01liy

100 rimes and tl1e efficiency is 0.01 percent; in otl1er words, most of tl1e 10,000
processors would be id.le most of tl1e rime. What a waste of a possibly expensive
resource! In otl1er words, according to tllis calculation you cannot use more
tl1an a smallish number of processors efficiently, and it implies tl1at an MPP witl1
hundreds or tl1ousands of processors would be hopelessly inefficient and hence a

waste of rime ever developing.
Tllis was a deeply depressing result at tl1at time wllich almost certaüliy set

back MPP developments by at least as few weeks! The impact was Jess tl1ai1
expected because tl1ere was not much MPP in tl1e 1960s! It is now accepted tl1at
Amdalli was in fact guite correct from a historical point of view. In tl1e late
1960s, problem sizes were too small for MPP ai1d, had it existed, it could not
then have been used efficiently. However, tl1ere was a flaw in one critical
assumption. The ratio of T5 to Tris not constai1t even for the same program and
usually vai·ies witl1 problem size. Typically, tl1e parallel or Tr pai·t grows fai· faster
tl1ai1 tl1e serial or Ts part. So if tl1e T5 pai·t can be made an arbiu·ary small frac
tion of TP by malcing tl1e problem size bigger, tl1en Amdal1l's law breal<s down.
It is tllis 'loophole' tl1at parallel processors exploit. Instead of using more ai1d
more processors to solve tl1e same size of problem you 01liy need to eitl1er
increase tl1e problem size for a fixed number of processors or else expai1d tl1e
problem size as tlK number of processors increases so tl1at tl1e serial fraction will
tend to zero, offering linear speeding-up witl1 increasing numbers of processors.
This is also an egually dramatic and common-sense result.

Consider anotl1er example. The serial part could be regarded as tl1e rime talcen
to read data into a program, altl10ugh it could also be reading- writing to

68 Parallel and higli-performance computing concepts

memory. Let us assume that this depends on N (the number of cases or zones).
However, in most models that geographers apply the computing activity in the
potentially parallel part increases as N 2

, and it is this which rapidly domina tes
computing rimes . Who cares if reading the data takes 1 second for ten cases and
1000 seconds for 10,000 cases when the computing time goes from 1 second to
1 million seconds! When Amdahl was writing down his 'law', memory space
limits would have restricted the number of cases that could be considered to a
domain where parallel processing w0tùd not have been worth while . The promi
nence given to Amdahl's law by many vendors of serial hardware and the degree
of annoyance felt by many vendors of parallel machines can still be seen in their
obvions delight in reporting to users how much better they are doing than
Amdalli's law w0tùd suggest.

A revised Amdalli's law was later produced by Gustafson et al. (1988). He too
argued that Amdahl's assumption that problem size was independent of the
number of processors was incorrect. Instead, problem sizes tend to increase with
the number of processors, in which case the upper limit on efficiency is
linear with the number of processors . According to Gustafson's law, maximum
speeding-up is now

(Ts + (Tr X N)) / (T,, + Tr)

or

N+(l-N)XT5

This suggests that an almost linear speed-up with increasing numbers of proces
sors is possible if the problem size increases with the nwmber of processors. So MPPs
only need large problems to be used efficiently, which is one of t11e main justifica
tions for using parallel processing in tl1e first place. It is 011.ly necessary to ensure
that the non-parallelisable partis a minusctùe fraction of t11e total time . On suit
able problems, tl1e non-parallelisable part grows slowly compared witl1 the paral
lelisable part, or if it does not tl1en it is tl1is criterion which you have to design
scaleable parallel algoritl1ms to meet. The secret, if tl1ere is one at all, is to ensure
tl1at there are no serial bottlenecks in t11e algoritl1m. This is partly a matter of
good design backed up by profiling of t11e code to find any serial bits, which t11en
need to be removed by eitl1er changing tl1e code or modifying tl1e algorit11111.

So a key consideration is tl1erefore whetl1er 'your' problem is big enough to

be appropriate for MPP or whetl1er tl1e problem size eau be increased as tl1e
number of available processors increases. In geography, t11ere are good grounds
for believing that in general tllis will usually be tl1e case, due to:

1 tl1e spatial data explosion of t11e l 990s, which dramatically increased prob
lem sizes by tl1e simple expediency of producing more data at a finer level of
spatial, temporal and attribute resolution (well, tl1at is tl1e essential defüling
characteristic of a spatial data explosion!);

2

3

Building a wall in a parall.el iuay 69

an interest in computationally intensive modelling and simulation proce
dures tlut can be scaled up as computer speeds increase and more data
become available, thereby pronlising to improve t11e quality of t11e results;

and
a growm of interest in a geocomputational paradigm for doing ail lcinds of

geography.

3.6 Building a wall in a parallel way

Now let us return to parallel dllilicing mind exercises. Wall building is often used
as a metaphor for explaining parallelism (Fox, 1988), alt110ugh ditch digging
would be just as good. Wall building is a t:raditional craft tl1at can and has often
been parallelised in practice, perhaps wit11out tl1ose involved ever realising it
because the parallelism is natural. The parallel sections in wall building are in t11e
nliddle of a stretch of wall and t11e serial parts are at tl1e ends of t11e parallel parts.
Increase tl1e number ofworkers and tl1e time needed to build a wall decreases.
For example, if one worker can build 1 yard of wall per day and t11e wall is 73
miles long and it talces tlu·ee days to do each end section, tlKn using t11e

arguments from t11e previous section:

Ti=Ts +Tr
T1 = 6 + 126,480 days

In ot11er words, it w0tùd take one worker 126,486 days to complete t11e task.

Now let us use 1000 workers:

T1000 = Ts + Tr/ 1000
T1ooo = 6 + 127 days

and it talces 011.ly 133 days, giving a speeding-up of951 rimes with an efficiency

of 9 5 per cent.
Now let us try 10,000 workers:

T10,ooo = T5 + Tr/10,000
T1o,ooo = 6 + 13 days

The wall now talces 19 days, producing a speeding-up of6657 rimes wit11 an effi
ciency of 67 per cent. However, note t11at one-tllird of the total time is now
being expended on t11e Ts end sections oft11e wall (e .g. 6 days oft11e 13), which
is serial and can 011.ly be done by a single worker no matter how many may be

employed on t11e rest of t11e wall.
So, wall building is a useful metaphor to demonstrate parallelisation effects.

There is no doubt t11at wall building is a parallel process and t11at t11e duration of
t11e building work depends on t11e lengtl1 of t11e wall and t11e number of workers
being used. Note tl1at here t11e ratio T5/ T1 is small, suggesting a maximum

70 Paral/.el and high-performance computing concepts

Table 3.4 Time taken to build a wall (in days) .

Nmnbe1- of Length of wall in 1niles
worlœvs

1 10 50

1 1766 17,605 88,006
100 24 182 886

1000 8 24 94
5000 7 10 24

10,000 6 8 15

Sou.1'CC: based on Morse (1994: p. 41).

Table 3.5 Speed-up rimes for wall builders.

Nmnbcr of
1JJOl"fœ1'S

1
100

1000
5000

10,000

1

1
73 .6

221
251
294

Length of wall in miles

10

1
96.7

734
1760
2200

50

1
99 .3

956
3667
5867

100

176,006
1,766

182
42
24

100

1
99.7

967
4191
7334

potential speed-up of21,000 rimes! Table 3.4 shows the rimes taken for a range

Table 3.6 Wall building: percentage efficiency.

Nmnberof Length of wall in miles
wo1"1œrs

1 10 50

1 100 100 100
100 74 97 99

1000 22 73 94
5000 5 35 73

10,000 3 22 59

100

100
99
97
84
73

of clifferent wall lengths and numbers of workers . It is nicely parallel. Table 3.5
shows ~peed-up rates, and the associated levels of percentage efficiency are
shown 111 Table 3.6. However, efficiency is still not 100 percent, because of the
serial sections at the start and end of each piece of wall, but note how it
increases both with the length of wall and with a reduction in the number of
workers.

On the other hand, if you can build a 100-mile wall in 24 days with 10,000
workers, is that not very useful if the alternative is to wait 482 years? Lilcewise,
who. really cares if you can build a 10-mile wall in 8 days even at 22 per cent
effic1ency, compared with 48 years at 100 percent? Does efficiency really matter

A brief liistory of parallel computing 71

that much? When the enemy is approaching, is it not more importa.nt to get the
wall built as rapidly as possible by throwing vast amounts of effort at it regard
]ess of the levels of efficiency displayed? If so, do the same arguments also apply
in a scientific computing context? After all, let us be rational here . An idle
processor in an HPP machine probably has a total capital cost of only a few
thousand pounds, not several million. So who cares if some are idle? The ability
ro solve massive problems quickly is itself a very important practical benefit that
far ourweighs more theoretical considerations relating to less than optimal levels

of performance or efficiency.

3.7 A brief history of parallel computing

With the benefit of hindsight, it is amazing that Amdahl's law clid not kil! off
MPP completely! However, it did not do so probably because few understood
the implications and because in the 1960s the entire subject was still at a very
primitive stage of experimental development. MPP was at least a decade or t:wo
away from becoming a useful tool rather than a computer science plaything.
Nevertheless, the idea of parallel cornputing is not new! ENI.AC, possibly the
world's first general-purpose digital computer, was conceived as a highly parallel
machine with twenty-five independent computing units in 1946. However,
parallel machines are harder to build and program than machines with a single
CPU, so it is hardly surprising that single-processor technology became domi
nant and that most computer algorithms were written for single-processor

CPUs .
Lewis and El -Rewini (199 2) tersely but neatly summarise t11e history of

computing as follows:

1 tl1e dawning of t11e age in t11e 19 5 Os
2 tl1e age of mainframes in the l 960s
3 the age of minicomputers in t11e l 970s
4 tl1e age of persona! computers in tl1e l 980s
5 the age of parallel computers in the l 990s

To tlus may be added anot11er step tlrnt is still unfolcling:

6 t11e age of clustered parallel processors in the 2000s .

Tlus basic sequence of computing developments mainly reflects advances in
t11e hardware used in the building blocks, from valves (1940- 1950s), cliodes
and transistors (1950- 1960s), srnall and medium-scale integrated circuits
(1960- 1970s), and very large-scale integrated devices (1980s onwards) .
Increases in speed and reliability coupled with dramatic reductions in cost and
physical size have greatly increased computer performance, particularly during
t11e l 990s. This has been coupled wit11 t11e repeal of Grosch's law (Ein-Dor,
1985) wluch, simply put, states that t11e best price/performance ratio is to be

72 Parallel and higli-performance computing concepts

achieved by. using the most powerful uniprocessors. However, you should
not.e that nght now hardware belonging to all but the earliest of these
penods of development still survive in one form or another. Indeed, main
frames have (perhaps perversely) become fashionable again in the mid-1990s
as file servers for very large numbers of users, to preserve legacy code worth
billions, and because of falling hardware costs and improvements in tlu-ough
put and performance.

~able 3. 7 gives ~orne landmark historical events in tl1e history of parallel com
putmg. The story 1s still running. If you wish to join in or contribute to it t11en
you need to be able to write parallel programs.

Table 3.7 Some landmark historical events in HPC.

1967

1969

1976

1977

1979

1981

1981

1981

1982

1982

1983

1983

1985

1985

1986

1987

1988

1989

1990

1991

1991

1992

1993

1996

1998

ILLIAC-IV: a 4-Mflop parallel machine with 64 processors each with 2048
words of memory '

CDC 6600: first pipelined computer

Cray 1: first vector supercomputer, 160 Mflops peak

C.mmp: 16 processors and 2.5 Mbytes of memory

ICL DAP: a 1024 single-bit array processor

BEN Butterfly with 256 processors

C1 p hypercube

DEC VA;'{ 11/782 t\vo-processor machine with shared memory

Alliant

Cray X-MP vector supercomputer with four processors

Sequent

Goodyear MPP, a 132 X 128 1-bit array processor

Meilco Computing Surface based on transputer

First Teradata database computer

TMC CM-164K1-bit processors

TMC CM-2 64K 1-bit processors

Cray Y-MP vector supercomputer with sixteen processors

Fujitsu VP200 vector supercomputer with two processors

Aliant FX/ 2800 with 28 i860 processors; Mass Par MPl with 16K 4 -bit
processors, each with three pipelines

CM-200

KSRl with 32 processors, shared memory

TMC CM-5 with 1024 Sparc processors

Cray T3D-2048: DEC Alpha processors

Cray T3E-2048: faster DEC Alpha processors

US ASCI systems for Tflop computing

Conclusions 73

3.8 Conclusions

Parallel processing is conceptually easy to describe; it is just a matter of sub
dividing a task into a number of umelated subproblems. The subsequent imple
mentation on a multi-processor machine is not ahvays (if ever) su·aightforward,
but it is becoming easier. Most of tl1e difficulty is due to unfamiliarit:y witl1 t11e
programming techniques t11at are now needed to exploit tl1e hardware. Also, it
is important to try to make do vvitl1 whatever real or virtual parallel system you
happen to have access to. Not all, or many of t11em require major investments of
many millions. You can create your own virtual parallel supercomputers using
networked workstations or PCs you already own or have access to. These virtual
machines can be run at night when they would otl1erwise be idle. Morse (1994)
notes: 'As tl1e knights oftl1e MPP pursue tl1eir quest for t11e Holy Grail ofTflop
computing, tl1e most attractive potential commercial market for MPP at tl1e low
end, goes largely untended' (p . 23). Remember tl10ugh t11at parallel processing
is scaleable computing. Code and algoritluns t11at scale up to more and more

processors also scale clown, if properly coded.
According to Wilson (1995: p. 497), tl1e future ofmassively parallel comput-

ing depends on how two key questions are answered:

1 Can large para.Hel computers be made cost-competitive compared witl1 net

works of workstations?
2 Can parallel programming be made time-competitive witl1 sequential

programming?

In some ways, t11e first question is irrelevant provided tl1at your code has tl1e
right level of parallelism. You can write code tlrnt works well on botl1; indeed,
tlus should be your aim right now! The second question is a matter of language,
standards, software tools, program generators and compiler development. In a
geograplucal context, there is also a tl1ird question. Who or which geographers
are going to do it and talce the initiative in tlus area of future critical teclrnology?
Parallel processing is here to stay, but how many geographers know tl1is as yet or

are prepared to do anything about it?

4 Types of parallel-processing
hardware and programming
paradigms

This chapter takes a doser look at the nitty-gritt:y of HPC hardware. It is not
designed to convert the reader into a computer scientist and covers only the bare
necessities. However, we are convinced that the general reader will want to know
a little more about the hardware, which affects how HPCs are programmed, but
most of t11e computer science can be skipped as it is irrelevant. If you are not inter
ested in any of tl1is tl1en skip tl1e chapter. If you lmow you are only in terested in a
particular type of hardware, tl1en go st:raight to tl1e relevant chapter; viz. Chapter
5 for vector supercomputers, Chapter 6 for shared-memory machines, and
Chapters 7 and 8 for distributed-memory multi-processors. Ifyou are confused,
tl1en maybe reading this chapter will help .

4.1 Automatic parallelisation software

This chapter briefly describes and discusses tl1e different types of parallel com
puter in an abstract way. It is designed to help you to understand tl1e general
nature of parallel-processing hardware . It may help you to malce decisions as to
vvhat type of programming paradigm to adopt, as tlus usually depends on the
broad class of parallel maclune tl1at you intend to target, alt11ough this is far Jess
relevant tlun previously. Now you might t11ink that none of tl1is computer hard
ware detail is necessary at ail, because your serial code can be automatically
u·ansformed into a parallel form via a clever compiler or by automatic parallelisa
tion software tilat 11ides all tl1e low-level detail and complexity. Indeed, it would
be really nice if t11ere existed an automatic parallelisation program tl1at took
in serial code and magically produced efficient parallel code targeted at any
specified machine arclutechire. At a su·oke, ail existing legacy serial code
wort11 billions of ECUs in replacement costs could t11en run unchanged after
recompilation and you could avoid completely tl1e need to develop any specific
parallel programming skills. However, it is unlikely tilat tl1is will ever work well
otl1er than on t11e simplest of problems, because parallelisation involves far more
than simple code or language u·anslation. The problem is so complex because it
is not just the code tl1at needs to be pa.rallelised but the logical intent of t11e
underlying algoritl1111s. Even if automatic parallelisation tools could be devel
oped, it rnay always be easier and more efficient to write new parallel algoritl1111s

Automatic parallelisation soft•ware 75

. lie! code wit11out first forcing thern tlwough a serial filter. It rnakes
as para . . .
b olutelv no sense whatsoever to wnte new code for a parallel computer 111 a

a s , ail 1' d b 1 · software' serial form so that it can subsequently be par, e ise y some c ~ver , ·
Let us be honest. Code for parallel machines really needs to be d.es1gned for par
allel execution. This is t11e essential challenge of parallel computmg.

So the initial difficulty in writing parallel code results from the fact t11at often
it is the algorithm and not just its representation in serial code that needs to b~

. Jlelised. The algoritl1m may also need to be changed to srnt t11e type of par -
para · · bl) tl · · b
allel hardware on wluch it is to be run, altl1ough (if prac.uca e us is est

'd d Indeed tJ1ere are tl1ree key cornponents tilat can mteract: (1) lmowl-
avo1 e . ') tl
edge of t11e application, (2) tilt'. nature of tl1e algor~tl1111s used, and (3 1e ~om-
puter science aspects of its hardware implementauon. Very few ~eop'.e will be
equally knowledgeable about ail of t11en1. If geography codes are. gmng to be
parallelised successft.ùly tl1en geographers are going to have to do It tl1emselves
by learning sufficient of tl1e computer science to be able to cope, because m~y
t11ey will have a good and detailed knowledge of tl1e algontl1ms and tl1e nahu_e
of tJ1e problem being tackled. This application lmowledge becornes even mme
important when existing serial algoritl1111s have to be re-expressed or redev~l
oped or reinvented in a parallel form. You have to fully unders~an~ tl1e _senal
code and its implicit algoritl1111s before you can properly parallehse It. It is not
simply a translation process, except in the most trivial cases.

On the otl1er hand, not ail serial algoritl1111s are in a h1ghly non-parallel form.
It is t11ese wluch present fewest problems, but even here you i:eed to know
enough about parallelisation to recognise tl1at tlus is tilt'. . case. It is important not
to be Julled into a false sense of p<u-allel happiness. For mstance, merely because
a compiler will identify many parallel Joops in your code does not .mean tl1at you
cannot help it to do rnany rimes better by subsequently rearra1:g111g your loo~s
in an even more efficient way. However, before you spend six weeks expen
menting witl1 different code changes, first be sure that tilt'. effort is going to .be
worth wlllie. A reduction of 10 percent in computing rimes is not wortl1 wh1le.
Equally, a reduction by 500 per cent in code tllat will never be run a.gain may
not be wortl1 while if rime talcen for tl1e code changes far exceeds tl1e expected
elapsed rime of tl1e run on your workstation. A good rule of tlmmb is tilat you
parallelise only tl10se problems where tl1e benefits far exceed tl1e pain!

The good news is tl1at it is not bard to develop tl1e necessary parallel pro
gramming expertise. Also, in some cases it is possible to write an elegant parallel
solution to a problem tl1at works better and runs faster tlun a sen_al _algontl1111 as
well as being easier to understand. A u·iple bull's eye! Indeed, ~llS _1s one of tl1e
nicest aspects of parallel processing. The single-processor machme is only a spe
cial case of multiple-processor hardware. However, code des~gned for tl1e former
seldom works well on tl1e latter, but code designed for muluple proce~sors often
works well on a single processor, provided tl1at it is written 111 a suffic1ently ~en
eral parallel way rather tl1ar1 for tl1is or tl1at oddball architecture . Computer sCien
tists can easily become tl1eir own worst enemies here, and geographe.rs wo~üd be
well advised to try to avoid tl1e same pitfalls. Here is sorne genenc adv1ce. If

76 Types of parallel-processing hardware

you are going to invest three months of your life programming a parallel
machine instead of relaxing, playing cricket or drinking, then you should ensure
that .(1) the problem is sufficiently important to justif)r t11e effort; (2) will not
reqmre anot11er tlu·ee montl1s reprogramming in one year's time when a differ
ent lump of HPC hardware cornes along; and (3) tlut it will work.

It is useful t11erefore to review briefly tl1e principal computer architectures on
which parallel programs can be run. It is often important to lmow a little about
t11ese a~pects, ~ecause it affects tl1e programming paradigm you adopt. It is
111terest111g, or lt can be in a 'New Scientist' sort of way, if you are at all curions
as to how t11ese machines work. Maybe it will also malce you feel better tl1at you
understand more of what you are doing. However, you really do not need to
lmow <Ùl tl1e micro techno details about how tl1e hardware actually works before
you can start to program it! Few geographers know much about how a PC
works, so let us leave 99 .9 percent of t11e interna! workings of parallel hardware
to. t11e . computer scientists and engineers and get on witl1 t11e far simpler task of
usmg 1t 111 geography. After all, no one will ever expect a geographer to be able
to design or build a parallel computer, but it is reasonable to expect t11at we can
program t11em so tlut we can start to malce good use of tlKm. If you are mun
terested in computer hardware t11en why not skip tlus chapter. The autl10rs
would daim to have (between tl1em) twenty years experience of programming
HPC hardware ofvarious types and antiquity witl1out lmowing much about tl1e
hardware. Indeed, recollects one of tl1e autl10rs, if he had realised t11at a Cray
I only offered at best a tenfold speed increase back in 1982 t11en he nught
never have bot11ered to use it and would possibly have become a much better
cricketer!

4.2 Computer architectures

Most parallel processing and programming books are what can only be described
as obsessed witl1 ilie physical details of hardware and how t11ey work. Sadly, most
of wl:at t11ey descri?e is obsolete u·ivia tlut are often of only historie interest by
t11e um~ t11e book 1s published! Geographers need to know sometl1ing but not
everytlung, and much of t11e detail is franldy of interest 01ùy to t11e historians of
computer science rat11er t11ai1 of ai1y great practical utility to a prograi11mer.
Nevertheless, a ver~ usefi.ù way of developing a general level of understanding is
b~ class1fy111g tl~e d1fferent computer hai·dware types as a meai1s of simplif)ring a
fairly complex s1tuauon.

4.2.1 Flynn's classification of hardware

A good starting point is tl1e old Fly1m classification of hardware types : virtually
every book on parallel processing refers to it. Flynn (1972) devised a simple ta,'C
~non:y of computer hardware tl1at is still widely used, even tl1ough it is over
s1mp~1fied. He .classified computers according to whetl1er t11ey process single or
muluple data items and whetl1er tl1e same or different operations ai·e being

Ta-hie 4.1 Flynn's taxonomy.

N u1n ber of data streams

single
multiple

Computer arcliitectures 77

Number of instruction strea1ns
single multiple

SISD
SIMD

MISD
MIMD

Table 4.2 Sorne common hardware labels.

N umber of data streams

single

multiple

N i.im ber of instniction streams
single multiple

Von Neumann
machine
vector and
array processors

pipeline computer

multiple-processor
parallel machine

app!ied to each item. It is important to appreciate tl1at most modern computers
are more complex tlun Flynn's taxonomy would indicate, and many may have
elements of two or more types of hardware in iliem somewhere. Nevert11eless, it
is still helpful to identify t11e liiùc between hardware ai1d programming paradigm.
Table 4 .1 gives Flynn's taxonomy ai1d Table 4.2 shows some of t11e more com
rnon hardware labels often used for t11e four basic arclutecture types .

An SISD (pronounced 'siss-dee' or in full) is ai1 abbreviation for Single
Insu·uction applied to a Single Data computer. Tlus is t11e conventional von
Neumann computer witl1 a single processor or CPU wluch executes insuuctions
sequentially, e.g. a PC or workstation or conventional muprocessor mainfraine.
There may still be elements of parallelism ludden away inside t11is hardware (e.g.
pipelining of aritl1metic operations or overlapping of serial insu·uctions), but
u·ue pai·allelism is not supported, and more significai1tly, none of tlus invisible
hardware parallelism is conu·ollable or directly accessible by the user. However,
as Dowd (199 3) points out, knowledge of some of t11is invisible parallelism can
be used to improve single-processor performance dramatically. Tlus is import
ant, because modern processors are very fuucky. Pipelines do not always work,
ai1d tl1e fancy uicks designed to help t11e memory to keep up witl1 t11e CPU can
be easily defeated by ai1 accidentally clumsy bit of code . Sudde1ùy, tlK code opti
misation and memory optimisation u·icks once employed on top-end vector
supercomputers become relevant if you want to squeeze ma,'Cimmn performai1ce
out of your home PC or workstation or even a single processor on an MIMD

(see later for a defu1ition) parallel maclune.

An SIMD (pronounced 'sim-dee', ideally spoken wit11 a real or false US accent)
is an abbreviation for a Single Insu·uction applied to Multiple Data computer.
This type of computer applies t11e same insuuction (or computer operation) to
multiple items of data sümùtaneously. Tlus may appear to be lughJy resu·ictive

78 T)•pes of paral/el-processing hardware

and of little value, but it has been found to be a useful paradigm for many sci
entific problems that perform lots of arit11metic on a regular set of data. SIMD
machines operate in a synchronous ma1mer. Typically, t11ere is a single instruc
tion stream tlrnt is acted upon by many different processors in a strict lock-step
fashion, so tlrnt each processor does exactly t11e same instruction on a different
piece of data, or is told to do not11ing. This can be visualised as t11e computer
equivalent to soldiers being drilled by a sergeant major, or <lancers in an aerobics
session following instructions from t11eir trainer. The encire u·oupe does exactly
what t11ey are told concurrently. It is not possible for any of t11e processors to
carry out different insu·uctions at t11e same rime. This is a very fine-grain type of
parallelism that has historically operated at t11e level of individual instructions or
arit11metic operations. The vector supercomputers of t11e l 980s and later are
SIMD machines, as indeed were t11e so-called 'array processors'. This form of
limited parallel machine works well, and machines of dus type have been at t11e
forefront of HPC for about t:wo decades and have only recently been superseded
by other types of parallel hardware.

An MISD (pronounced 'miss-dee,), which stands for Multiple Insu·uctions
applied to Single Data computer, is a somewhat su·ange technology. It would
require a number of processors to perform different operations on t11e same
piece of data at t11e same rime. We found it hard to figure out why you would
want to do this unless you are a computer scientist interested in weird comput
ing! It is a highly specialised and seemingly a very resu·ictive form of parallelism
tliat is often impractical, not to mention useless, as t11e basis for a general
purpose machine. If a real MISD machine can be built, maybe its only role in
t11e foreseeable future will be as some kind of computer engineer's playt11ing,
but maybe we are biased (or just plain computer ignorant)!

An MIMD (pronounced 'mim-dee') stands for Multiple Insu·uctions applied to
Multiple Data computers. This type of machine has multiple processors t11at
execute t11eir own programs wit11 t11eir own data. Communication between t11e
processors allows tliem to co-operate in the solution of a single problem. This is
t11e most general form of parallelism yet discovered. The processors no longer
have to operate toget11er in a highly synchronised global manner but instead
local synchronisation is imposed only when required during t11e numing of a
program; for instance, a processor will not be allowed to start t11e next loop in
t11e program if it requires results from t11e completion of t11e previous loop by ail
t11e ot11er processors. This allows each processor to work on problems of uneven
Joad wit110ut having many idle processors if t11e programmer is sufficiently clever
in t11e su·ucturing of t11e task . It is t11is sort of computer t11at is currently the
dominant HPC parallel-processor technology. Note t110ugh t11e potential for
confusion tlrnt can arise here. An MIMD machine is typically built from SISD
components, and some even utilise SIMD processors! Maybe tllis is a reflection
of t11e generality of the MIMD concept. Presumably MIMD could one day,
fairly soon, also become t11e dominant HPC workstation arcllitecture with tlie

'

Computer architectures 79

difference between tl1e real HPC and t11e not so HPC ends of the specu·um

being reflected in tl1e number of processors being used .

4.2.2 Classifying parallel machines by how they access memory

Another way of classifying parallel machines is by t11e way tlieir memory is
accessed by t11e processors. Treleaven et al. (1982) classify MIMD designs di~
tingtlishing between shared memory and private or disu·ibuted memory. Tlus 1s
a very important practical distinction and is repeated by Morse (1994), who
argues that while a top-level architecture discriminator is between SIMD and
MIMD tliere is a very important distinction bet:ween shared-memory (SM) and
disu·ibuted-memory (DM) hardware, wllich has considerable practical relevancy

to programming and efficiency.
A shared-memory machine is made up of a number of separate processors,

each of wllich shares t11e same global memory of the machine. Data stored in
any part of t11e memory is instantly available to any processor. Figure 4.1. gives
an illusu-ation of what tllis looks like. Shared-mernory systems are t11e eas1est to
program, but tl1ere m·e currently limits on the number of processors t11at can be

used because of rnemory contention problems.
A distributed-memory maclline is composed of mm1y processors (or process

ing elements - PEs - or nodes), each ofwhich consists of a pr~ces~or and some
local memory. The processors are connected togetlier by very fast mternal com
mmlications net:work. However, a processor can only directly and quickly read
and write toits own local memory. It can access t11e memory belonging to ot11er
processors, but only by asking for it via an explicit message; see Figure 4.2 for a

Shared Memory

lnterconnection Method

Processor Processor Processor

Fignre 4.1 A shared-memory machine.

80 T)•pes of parallel-processing hardware

lnterconnection Method

Processor Processor Processor

local local local
memory memory memory

Figure 4.2 A clistributed-memory machine.

sim~le ,cliagrammatic representation. This is the origins of the term 'message
pass1~1g . However, the rime taken to access non-local memory depends on the
locations of the communicating processors in tenus of the interconnection
network, the size of the message and the bandwidth of the interconnector.
However, it is important to note that the clisri·ibuted-memory approach is the
more general paracligm for parallel computing because the technology scales (in
theory at least) to almost any number and types of processor. The cost is that it
is far harder to program, since the communication of data and results
between processors has to be explicitly handled by tl1e software tl1at YOU have
t a write .. By conri:ast, tl1e global shared-memory hardware (Figure 4.1) approach
is far eas1er and s1mpler because much of tl1e complexity is invisible to tl1e pro
grammer (altl1ough it is still there behind tl1e scenes).

At tl1e risk of furtl1er confusion, it may be wortl1 painting out t11at a single
?rocessor SISD computer also has a form of interconnection network linking
its CPU to memory (typically termed a bus or channel interface). The multi
processor version merely has more processors hung on this interna! network
which runs much faster and has greater bandwidth. '

4.2.3 Classification by number of processors (or CPUs or PEs or
nodes)

Parallel hardware can also be categorised by tl1e numbers of processors it
contains : There are a number of possibilities :

1
2

Computer arcliitectures 81

one processor means that it is not a parallel machine;
parallel hardware (PP or parallel processor) witl1 small numbers (r:vo
to 32) of t:ypically very powerful highly customised processors w1tl1
shared memory and increasingly vector processing capabilities (typically a
shared-memory MIMD or an NUMA (non-uniform memory access) or an

SMP box);

3
highly parallel machines (HPP or lùghly parallel processor) witl1 m~clium-
power processors (typically eight to 256) with shared memory (typically a

global shared-memory or clisri·ibuted-memory MIMD);

4

5

6

highly to massively parallel maclùnes (MPP or massively parallel processor)
based on medium-power processors (100 to a few tli.ousand) (typically an

MIMD with clisri·ibuted memory);
massively parallel maclùnes (MPP) witl1 many tl1ousands (4096 to 65,536)
of low-power processors (typically a synchronous SIMD architecture but
also becoming popular in the ASCI drive rowards teraflop computing); and
tlie ASCI type of approach, where tl1e MPP maclùnes are tl1emselves nodes

on a network of many otl1ers.

In general, as a rule of tl1umb, more processors are harder to program than few.
Parallel maclùnes witl1 only a small number of processors and global shared
memory offer tl1e least-effort route to parallel programming as serial code will run
witl1out change on a single processor. It is here where clever compilers can malœ
t11e parallelisation task appeai· almost trivially easy ai1d ri·aii.sparent; altl1ough tl~s
need not deliver tl1e best performance possible, it does offer an easy route for smt
able code. However, as the number of processors increases so tao does tl1e poten
tial performaiice benefit and tl1e greater tl1e complexity of tl1e task. Typicall?', it
is only when you have 64 (or more) processors that clistributed-memory maclunes
begin to outperform shai·ed-memory maclùnes. Shai·ed-memory maclùn~s tend
ta use lùgh-performaiice but highly custonùsed clùps, whereas clistributed
memory maclùnes ai-e usually built from lugh-performai1ce workstation pro
cessors which ai·e slower. The current trend is to build shared-memory hardware
from mass-produced clùps, and tlùs is likely to produce affordable multi-proces
sor-based workstations but not HPC. Most of tl1e hai·dware manufacmrers cur
rently offer symmetric multi-processors (SMP) based on tlùs approach. At the
same time as processor speeds increase it becomes feasible to create monster MPP
maclùnes based on man y tl1ousai1ds of fast but cheap processors if the parallel
programming tasks are sufficient coarsely grained (a definition is given later) or if

more efficient hai·dwai·e ai·clùtectures can be invented.

4.2.4 Three basic machine architectures

A final typology is to tlùnk in ter ms of what types of parallel hardware are most
commonly used in practice. Demmel (1996) reminds us tliat basically tli.ere are
only two main approaches to parallelism: SIMD and MIMD. Remember that
SIMD involves applying tl1e same operation on multiple pieces of data in parallel,

82 T)•pes of paraUel-processing hardware

while with MIMD different insu·uctions are applied to different data at the same
time. This results in a threefold typology of parallel machine architectures:

1 SIMD array or vector processors;
2 MIMD-SM (shared memory) machines with a small number of very fast

processors; and
3 MIMD-DM (disu-ibuted memory) machines with larger numbers of fast

but mass-produced components.

Examples of SIMD parallelism include a confusingly broad range of different
hardware types, ranging from single-processor vector supercomputers such as
the Cray I or multi-processor Cray J90 to extinct machines such as Thinking
Machines CM-2, varions array processors (i.e . ICL DAP) and also any pipelined
floating-point accelerator attached to a mainframe (an approach that was fairly
common in the 1980s but is now totally defunct). MIMD parallelism can be
found in every type of parallel machine where separate processors can be indi
vidually programmed. The complication is that many machines now exhibit
both SIMD and MIMD parallelism at different levels; for example, the multi
processor Cray J90 (malcing it an MIMD machine) has multiple SIMD CPUs,
each capable of vector processing). Equally, an MIMD machine can be pro
grammed to fonction as an SIMD! However, the future may be simpler, as the
HPC hardware world seems to be heading towards two generic hardware
configurations, maybe only one. It is already possible to imagine hybrid
MIMD-DM machines being built from MIMD-SM, SIMD and SISD subcom
ponents . In the long run, SIMD hardware seems likely to disappear inside
processor technology as part of the floating-point unit. MIMD-DM parallel
hardware is by far the more flexible and general type, and maybe it is this style of
hardware that will eventually talce over. No one really knows and, as geogra
phers, does it much matter anyway? The key observation must be that the future
of HPC is parallel, and the most future-proof way of programming these
machines is via message passing and/or some suitable HPC language (such as
HPF), but more about these aspects in subsequent chapters .

4.3 The three principal types of HPC hardware

Despite all our attempts at simplification, it is nevertheless u·ue that this is still a
potentially highly confusing topic. One problem is that there are several differ
ent terms in popular currency which are widely regarded as being synonymous,
e.g. SIMD, and vector and array processors . At the same time, these tenns can
have far more resu-ictive, distinct and sometimes different meanings to different
people, vendors and authors of books on parallel computing. What follows is our
attempt to demystif)r the tangle.

The three principal t)'pes of HPC harchuare 83

4.3.1 Vector processors, array processors and SIMD hardware

A vector processor is usually considered to be a pipelined machine that is
designed to perform large amounts of floating-point arithmetic. Most floating
point arithmetic in code is based on very simple operations such as add, subu·act,
multiply and divide plus some basic fonctions such as SQRT on real-valued data.
Many scientific and engineering computing applications involve performing
many millions of these operations. The challenge for the early computer builders
was how to speed up this floating-point arithmetic computation, and the notion
of a supercomputer was born. It was recognised long ago that much scientific
computing consisted of large amounts of calculation being repeated on different
data . In essence, many programs consist of a series of do-loops within which the
<U"ithmetic is contained. This is a natural reflection of the use of mau"ix algebra.
Clearly, if it was possible to exploit any opportunities for local parallelism then it
would be worth while. It is noted that the opportunities for parallelism also
exists at three different levels: in the loop, in the sequence of arithmetic opera
tions that is repeated many rimes and in the bit manipulations that constitute an
individual add or multiply operation at the finest level of detail. Over time,
attempts have been made to exploit all three.

Pipelining it seems was originally developed as a cost-saving engineering com
promise method of implementing the SIMD computational mode!. Almasi and
Gottlieb (1989) write tlut pipelining 'is an engineering technique tlut u·ades off
performance for lmver cost by executing tl1e data items for each insu·uction in
overlapped fashion on shared hardware, ratl1er tl1an in fully parallel fashion on
fully replicated hardware' (p . 301). lt is less efficient t11an a 'proper' parallel
approach but was more tl1an good enough to form tl1e basis for HPC for about
two decades. Ma.ximum speeding up is related to degree of instruction overlap
and on most machines was less than a factor of 10, whereas on a parallel machine
speeding up is broadly equivalent to t11e number of processors . In essence tl1en,
a Cray I vector supercomputer (one of tl1e first to be so designated) witl1 an
eleven-stage pipeline might be considered broadly comparable to an eleven
processor parallel machine with shared memory for some types of floating-point
operation. The speeding up in vector processing cornes from pipelining, where
tl1e processor can work on several insu·uctions in different stages of completion
at tl1e same time . In essence, tl1e processors form an assembly line, each unit per
forming a task and then passing tl1e result on to the next one. Sorne may regard
vector processors as merely serial machines witl1 very fast floating-point units ;
however, tl1at is being somewhat churlish!

Consider for example the operation SQRT (2X; + 5) applied to a vector ofN
values of X. In serial Foru·an, tllis would in volve

DOI=l,N

X (I) = SQRT(2.0*X(I)l 5.0)
END DO

84 Types of parallel.-processing liard·ware

the DO loop is repeated N rimes, with a considerable amount of performance
Joss because the rime taken to perform the different operations varies tremen
dously; for instance, fetching a value for X(I) from memory wmùd probably be
1000 or more rimes slower than the rime taken to multiply it by 2.0. On a
sequential computer, dus loop wmùd be equivalent to N statements of the form

X (1) = SQRT (2. 0 *X (1) + 5. 0)

X (2) = SQRT (2. 0 *X (2) + 5 . 0)

X (3) = SQRT (2 . 0 *X (3) + 5 . 0)

etc.

X(N)= SQRT(2.0*X(N)+5.0)

Note also that each statement has to be processed completely before work can
start on any of the next one. The idea in pipelining is to overlap these operations
in order to keep the arithmetic units as busy as possible .

As can be seen from Table 4.3, it tal<es N + 3 steps to calctùate a vector of N
values using a three-step pipeline . If N is very much larger than 3 this represents
a considerable speeding-up over the sequential mode!, which requires N X 3
steps to complete the operation. However, this assumes that each step of the
pipeline talces the same amount of rime and that it does not require a branch or
subroutine cal!, bath of which would break the pipeline and force it to opera te
in a serial way.

Now each of the N loops could be sent off to a separate processor, but in the
late 1970s it was much easier to use a pipeline approach, whereby different
stages in the computation could fonction independently and arrangements made
so that t11ey could be processed in an overlapped manner; see Hockney and
Jesshope (1981) or Kogge (1981) for fuller descriptions ifyou are at ail inter
ested in any of tllis aspect of palaeo-computing technology.

Table 4.3 Example ofvector processing.

Tinie step

1
2
3
4

N
N+l
N+2

1

2*X1

2*X2
2*X3

2*X4

Processor
2

2*X1 + 5
2*X2 + 5
2*X3 + 5

2*XN- l + 5
2*XN + 5

3

sqrt(2*X1 + 5)
sqrt(2*X2 + 5)

sqrt(2*XN-2 + 5)
sqrt(2*XN-l + 5)
sqrt(2*XN + 5)

The three principal t)•pes of HPC hardware 85

The SIMD approach has been operationalised at two different levels. The
vector supercomputers overlapped tl1e floating-point computation witllin DO
!oops. The array processors started off by exploiting the parallelism involved at
t11e bit level witllin individual floating-point operations, also witllin a DO loop.
This is a much finer degree of parallelism, but it could be applied to far greater
numbers of data items simtùtaneously tl1an witl1 a vector processor.

To summarise, then, it is apparent t11at SIMD hardware is a far Jess general
purpose parallel computing tl1an MIMD, but it offers a number of advantages:
it is easier to btii!d, it is inherently synclu·onous, it offers performance advantages
for suitable problems, tl1ere is one common instruction memory for tl1e whole
machine, and as ail tl1e processors do t11e same tlling at tl1e sa.me rime tl1ey are
easier to debug and very easy to program. However, tllis type ofHPC hardware is
really only suitable for data parallel problems; see Chapter 6.

4.3.2 MIMD- SM hard1vare

The shared-memory MIMD hardware is a natural evolution from a uniproces
sor. Indeed, during tl1e 1970s many mainframe and mülicomputer manufactur
ers started to produce versions witl1 two and sometimes more CPUs . They may
be regarded as tl1e ancestors of today's shared-memory MIMD machü1es. As
tl1e component speeds increased so tao did tl1e am·actions of parallel process
ü1g via tl1is more coarsely grained route. There were also good commercial
reasons. If a user wanted twice tl1e performance and no mliprocessor hardware
could deliver it, t11en why not double t11e number of processors! The idea of
scaleable computing is not a new one; it is just tl1at manufacturers are slowly
getting better at it.

Multiprocessors witl1 global shared memory, whet11er based on main
frame, minicomputer or workstation hardware, have some very useful aspects.
In particular:

1 it is t11e easiest parallel hardware to program, with a close resemblance to
sequential programmü1g;

2
3

4
5

some serial programs may run unchanged;
tl1ere is a simple approach to data movement using shared memory as tl1e
data-transmission mecha1lism;
mliform memory access rime; and
ail tl1e processors share tl1e same memory, tl1ereby reducing storage
redundancy.

However, shared-memory macllines have some problems apart from the obvions
ones relating to software (e.g . how to spread t11e work of a program efficiently
and safely over more tlun one processor) , especially:

1 memory contention resu·icts the ma,\'.Ïmum number of processors that can
be used;

86 T)'pes of parallel-processing hardware

2 the hardware has historically tended to be expensive because of the use of
customised components, which are not mass produced;

3 coarse-grained parallelism problems are best suited because of the relatively
small number of fast processors; and

4 performance may suffer if users run hard to parallelise se rial code wi th man y
data dependencies through automatic parallelising compilers rather than
restructure or rethink their algorithms.

Shared-memory machines can be prograrnmed in varions ways . You could run a
separate serial prograrn on each processor concurrently, which would alvvays
yield maximum levels of performance efficiency, but tllis is not really parallel
programming. You could use message passing to allow tl1e processors to com
municate and share tl1e work of a single program (as in distributed-memory
systems) or, more usually, you can use multiple processors on a single program
using compiler directives which specif)r wllich sections of tl1e program can be
performed in parallel (Piz. au toma tic parallelising compiler options) or by
directly specif)ring tl1reads of execution (somewhat harder to do).

MIMD- SM hardware is likely to become tl1e dominant workstation arcllitec
ture of tl1e near füture, once tl1e annual speeding-up of tl1e microcllip st<u-ts to
dimirlish and tl1e case for multiple processors in tl1e same box becomes import
ant and cheap . At best, it will probably only ever yield medium-power HPC
unless tl1e ir1dividual processors are tl1emselves leading-edge vector supercom
puters . The jury is still out, but tl1e economic arguments may soon defeat tl1is
shared-memory approach to HPC unless radical new architectures or clever soft
ware are devised tl1at allow tlie memory contention problems to be avoided.
Currently, tl1ere is some evidence of both.

4.3.3 MIMD-DM hardware

The key HPC hardware type for tl1e füture is almost certainly some variant of
MIMD-DM machine. Almasi and Gottlieb (1989: p. 355) have a very rlÎce way
of.describing tl1is form of parallel computing that is wortl1 reproducing. They
wnte:

Suppose we change tl1e rules of tl1e garne and let each processor march to
its own drummer ratl1er tl1an tl1e single drum of an SIMD arcllitecture by
expandmg each processor's memory so tliat it can now hold a substantial
number of instructions as well as data. Suppose, too, tl1at tl1e problem to be
computed is broken into substantial programlets (processes or tasks) tl1at
can be disu·ibuted to tl1e processors for execution. The existence of tl1ese
programlets suddenlv creates some new concerns tliat we didn't have to
worrv about before.

The last sentence 1s a nice understatement, and we have taken tl1e liberty
of underliiling it to emphasise its importance. The so-called programlets

The three principal types of HPC hardware 87

simultaneously cause problems and create opportunities to exploit p<u-allelism
better due to tl1e immense increase in flexibility tl1ey provide .

Chalmers and Tidmus (1996 : pp. 23-24) provide a more basic defulition:
'Disu·ibuted memory MIMD systems consist of a collection of processors, each
witl1 its own memory and connected together by some forrn of network.
Processors comrnmlicate by passing messages via tl1e interconnection network'.
This type of MIMD maclline is generally tl1m1ght of being as very useful
because:

1 it is very flexible;
2 it can handle heterogeneous processing (mixtures of processors of different

types and speeds);
3 tl1ere is no memory contention;
4 otl1er forms of para.lie! programming exist as special cases;
5 it offers tl1e basis for llighly parallel computing using up to several thousand

processors built from mass-produced components; and
6 most leading-edge HPCs are now of tllis broad family type.

MIMD- DM tl1erefore seems to be tl1e future ofHPC. It is perhaps tl1e ultirnate
integrative system framework into which MIMD-SM and SIMD hardware com
ponents can be plugged if necessary or thought to be useful. It is also possible
to cluster MIMD-DM systems .

In HPC, tl1e benefits tend to corne witl1 'costs' attached to tl1em. The prin
cipal problems here are:

1 the greater difficulty of programrning MIMD-DM macllines so tl1at codes
run efficiently;

2 tl1e need to explicitly change serial codes;
3 tl1e need to redesign algoritl1ms;
4 memory access rimes are uneven;
5 tl1e processors commmlicate by sending and receiving messages; and
6 tl1e greater risks of botl1 bug creation and bug survival because parallelism

adds an exu·a layer of complexit:y.

So how exactly do tl1e processors commmlicate? How are tl1ey interconnected?
How do messages go from processor A to processor B? What are tl1e data u·ans
fer speeds? What are tl1e principal netvvork geomeu·ies? Weil, as a geographer or
social scientist, you really do not need to lrnow or worry about much or any of
tl1is, other tl1an to note tl1at messages do not go from processor A to processor
B instantly, and tl1ey u·avel many rimes slower tl1an tl1e speed at wllich tl1e hard
ware can do aritl1111etic. So minimising network commmlications u·affic is a uni
versally good idea! Basically, if you are to avoid Amdahl's law you need to design
algorithms tliat scale well so tl1at as problem sizes increase and/or the number
of processors increases, tl1e rime each processor spends doing computation
ratl1er tlian cornrnunicating with otl1er processors also increases. The problern

88 T)•pes of parallel-processing hardware

!1ere is that this feature lns to be built into your algorithms, and in practice this
is not always easy to acl11eve. Other than this bit of common sense you can
forttmately escape from most, if not ail, of the details of the associated
computer science.

4.4 Levels of parallelism and identifying them

!he only other bit of computer science tecl1110-spealc that is really relevant here
is the concept of granu~arity. Granularity is the relative amount of computation
that can be performed 111 parallel. Granularity or parallel graininess is therefore
an 1111P~rtant concept when considering different types of parallelism and where
to find 1t. Yon do not have to be a rocket scientist to realise that parallel com
puters fee~ on p_arallel tasks. However, ifyou are unable to split your work (i.e .
code) up mto p1ec~s that can be run concurrently tl1en you will not gain any
benefits from ru11111n~ on a parallel processor otl1er than access to a very large
memory space. What 1s le~s obv'.ous is where you can find parallelism. Hockney
and Jessho~e (1988) prov1de a hst oft11e different levels ofparallelism that have
been used smce tl1e earliest days of computing. This is summarised in Table 4.4.
It would appear that over time tl1e focus of active parallel programming has
moved u~w~i;ds from_ (~) to (2) and maybe even (1) . Balœr and Smitl1 (1996:
P· :76) wnte. Th~ ~rammess of a parallel application is a measure of how small a
mut_ we can p~·t1t1on_ problems into'. However, it is important to note that
maximum grau11ness (1.e_- small_est size) is not best and that optimal granularity is
de~endent on the ma~l11ne bemg used. Over time, the optimum size of granu
lanty has been ~1creas_mg. Today, you need to think in terms of large chunks of
~ara~el c~mputlng w1tl1 a chm1k size tl1at can automatically be increased (by
) om algonthm) as processors become faster.

F~ne-gra_i~ed para!lelisni is the smallest imaginable grain (size) of parallel pro
cessmg act1vity; for mstance, tl11s could involve storing a single value on each
processor and have each processor perform varions calculations on tlrnt value. It
could also mvolve dist1·ibuting tl1e work involved in a single a.ritl1metic opera

Table 4.4 Levels of parallelism.

1 at the job level
• between jobs
• between phases of a single job

2 at the program level
• between parts of a program
• wi thin do- loops

3 at the instruction level
• between phases of instruction

execution

4 at the arithmetic and bit level
• between elements of a vector operation
• within arithmetic logic circuits

Sou1-ce: Hockney and Jesshope (1988: p. 54) .

Table 4.5 Levels of granularit:y.

Grannlarity

very coarse-grained
coarse-grained

meclium-grained

fine-grained

very fine-grained

Sou.Tee: based on Ko ber (1988).

Levels of parallelism and identifying them 89

When to find it

job
program level

subroutine level
outer DO loop

inner DO loop
expression level

operation level
bit level
intra-instruction level

Prograrnrning style

multi-tasking

MIMD

SIMD

SISD

tion. So a problem tl1at can be broken down into many small para.lie! tasks can
be described as 'fine-grained'. At the other extreme is coarse-grained parallelisrn.
This involves breaking a problem into tl1e largest possible size of para.lie! com
ponents. Sawyer (1998: p. 35) writes: 'Fine-grained problems can have a greater
maximum degree of parallelism tlrnn coarse-grained problems, but it is perfectly
possible for coarse-grained problems to be implemented efficiently'. Indeed,
tl1ere is an argument tlrnt as tl1e processors used in distributed-memory
machines become faster so it becomes important to increase tl1e granularity of
tl1e parallelism to gain maximum benefit from faster processors and reduce
potential communications bottlenecks.

Kober (1988) offers a useful classification of parallelism at different levels
witlùn a program; see Table 4.5. It is very useful to tlunk in terms ofwhere to
find parallelism and what hardware and/or programming paradigm is most
appropriate for handling it, altl1ough tlùs does tend to be ratl1er theoretical.
With current HPC, if you want maximum performance you often have no real
choice . In general, coarse- and medium-grained parallelism now provides
tl1e best performance, especially if tl1e number of processors is linùted or if tl1e
processors are fast ones . The key in ail parallel design decisions is to try to max
imise processor utilisation while 1lli1ùnùsing tl1e time tl1e processors are idle or
doing or waiting for communications witl1 otl1er processors. What tlùs means in
practice is that you need to tl1ink in tenus of decomposing or brealcing up the
work of your program so tlrnt each parallel task talœs several seconds (or ideally
far more) to perform. If it talœs a few milliseconds then you are unlikely to
achieve good levels of performance. The faster the processors become in relation
to commmùcations network speed, tl1e greater tl1e amount of work tl1ey need to
perform per unit of commmùcation unless tl1e speed and bandwidtl1 of tl1e
interco1111ection network increases at the same rate . The difficulty here is tlrnt
processor speed-ups continue to outperform network improvements. Ifyou fa.il
to achieve a good balance tl1en either your job's execution time will not scale
linearly witl1 the number of processors being used or it will reach a limit and

90 Types of parallel-processing hardware

then start to become worse, and you can easily achieve very poor levels of per
formance to the extent that more processors actually make it even worse! Fine
grained parallelism is harder to h<rnclle as in most cases it requires more
inter-processor communication. Twenty years ago, this did not much matter
because the bottleneck was tl1e computation ratl1er than memory or network
access times. Today tl1e reverse is t:rue . The difficult:y is tlut not all problems can
be expressed in a coarsely grained fashion . Most problems can involve botl1
coarse- and medium-grained parallelism, and it is most usefül to be able to cover
botl1 of tl1ese on tl1e same system via tl1e same language.

4.5 Programming models

In practice, tl1e parallelism available in the HPC hardware is hidden from tl1e
user and is presented by what is commonly termed a programming mode!.
Demmel (1996: p. 2) defines a programming model as 'tl1e interface provided
to tl1e user by ilie programming language, compiler, libraries, run-time system,
or anytl1ing else tlrnt tl1e user directly programs. Not surprisingly, any pro
gramming mode! must provide a way for tl1e user to express parallelism,
communication and synchronisation in his or her algoritl1111 '. Historically, pro
gramming models were totally tied to particular hardware architectures. This
was really bad news for users! When tl1e hardware became obsolete or tl1e com
pany tlut made it went bankrupt, tl1e code had to be rewritten for anotl1er
machine because it was probably not portable. None of tllis helped to popula
rise parallel programming!

Today's programming models are designed to be largely independent of tl1e
hardware, which is great because it allows user code to survive maclline obsoles
cence and aids portability. Tllis is acllieved via a layered approach, in which tl1e
user's program is separated from tl1e hardware via libraries and compilers tlut
map tl1e parallel-programming model on to whatever tl1e maclline offers, lliding
most of tl1e maclline-specific details. The potential drawbacks are:

1 not al! programming models work equally well on ail maclline arcllitectures:
tl1e 'horses for courses' argument still holds good;

2 not al! problems are suited to all programnling models;
3 tl1ere is a potential loss of performance due to loss of access to the interna!

fonctions of a particular machine; and

4 what Demmel (1996: p. 3) calls 'caveat programmer', by wllich he means
tl1at tl1e technology used to create tl1e layers (compilers, libraries and run
time systems) is often incomplete, buggy, inefficient or some combination
of all tl1ree.

There are a number of different parallel programming models and paradigms.
Three basic types of interest to geographers are (1) vector parallel programming;
(2) multi -tasking, data parallel and shared DO loops; and (3) message passing.
Originally, each had its own arcllitecture, but increasingly hybrid architectures

Examples of each type of parallelism 91

are able to handle more t11at one of tl1em. However, iliey ail require different
programming principles . What tl1ese are and how tl1ey work is tl1e subject of tl1e
next tlU"ee chapters.

4.6 Examples of each type of parallelism

Weil that is enough about computer hardware for tl1e present. We end tl1is chap
ter with a brief review of tl1e different types of parallelism offered by the prin
cipal types of computer in Flynn's classification discussed in Section 4.2 .1.
Imagine a problem involving marking 100 examination scripts, each witl1 five
questions. Now let us consider how different computer hardware would hanclle
it. In tl1is example, you have to imagine tlut each marker is equivalent to a
processor and each script to a chunk of data.

4.6.1 SISD hard1vare

One 1rnu·ker works tl1rough each script in tl1e pile in sequential order. Weil, tl1at
is obviously serial and tllis is essentially hmv conventional computers (and exam
ination markers) operate. The rime talcen depends on tl1e number of scripts and
the average time for each script . The bottleneck is tl1e marker's speed.

4.6.2 SIMD vector processor

Now take five markers: a supervisor gets the first script and sends it to Marker 1.
Marker 1 marks question 1 and passes the script to marker 2. Then marker 1
starts tl1e next script, while marker 2 marks question 2 and passes it to marker 3
and so on. You would almost but not quite acllieve a fivefold speed-up,
depending on how many scripts were to be marked because of iclle time at the
start and end. Tllis assumes tlut it takes tl1e same time to mark each question,
otl1erwise t11e pipeline would stall and the speed-up would diminish to Jess
tl1an tl1e tl1eoretical best.

4.6.3 SIMD data parallel machine

A supervisor sends each marker some scripts. He (or she) tl1en says 'mark ques
tion l ', and each marker does t11at. Only when all markers have finished question
1 can t11e supervisor record tl1e marks and tl1en announce tlut tl1e markers ail
start question 2, etc. All questions are marked one at a time, exactly synchro-
11ised witl1 ail otl1er markers. If some questions talce longer to mark tl1en every
one has to wait for all tl1e marking to be completed. Optimum performance
would be reached when tl1e number of markers equalled tl1e number of scripts
or tl1e number of markers could be exactly divided into tl1e number of scripts;
otl1erwise, you would have iclle processors and slightly poorer performance.

92 T ypes of parallel-processing hardware

4.6.4 MISD

Each marker is sent a copy of question 1 on script 1. They all mark it according
to different criteria and end up with a different mark for it. This would not be
very usefül, although seemingly some examinations are sometimes conducted in
sometlùng alcin to tlùs approach! Tlùs may also be regarded as a mode! post
modernist approach to parallel computing; viz. total chaos.

4.6.5 MIMD shared memory

Each marker is allocated a mùque share of tl1e scripts iliat tl1ey are to mark. Ali
scripts are stored in a single pile at tl1e end of tl1e room to wlùch al! markers have
access. The rime taken to complete tl1e marlcing process is tl1e rime taken by tl1e
slowest marker to complete lùs share of scripts. Note tlut performance could be
improved by what is termed 'Joad balancing', so tlut tl1e speed of tl1e marker
determines how many scripts are sent to be marked.

4.6.6 MIMD distributed memory

There are two alternative work distribution strategies. Each marker is sent a par
ce! contaüùng a pile of scripts to mark in tl1eir own time . The parce! is sent by
courier (simulating a message on an interconnection network). Once received,
tl1e scripts are marked in parallel by each processor and sent back to tl1e central
store in anotl1er parce! (by courier) only when ilie task is fuùshed. Depending on
tl1e speed of ilie courier, a more efficient solution is for a controlier to dist:ribute
a new script to each marker as tl1ey fuùsh one and it is received, so if some scripts
take longer ilian oiliers or some markers work faster ilian otl1ers, no one is idle
for long. Tlùs greater flexibility in work distribution is an important feature of
tlùs type of hardware.

4. 7 Conclusions

There is not tl1e slightest doubt tl1at writing software for parallel computers is
harder tl1an for sequential maclùnes. You need to understand tl1e types of paral
lelism tl1at tl1e hardware can hancile, where to fu1d it in your code and how to
create it when writing new or changing old algorithms. It is not largely or just a
computer science problem but also a design and software engineering challenge
for you . In fact, you do not need to know much about ilie computer science,
altl10ugh Flynn's taxonomy serves as a usefül introductory guide as it is helpfül
to know what different types of computer exist and broacily how tl1ey work.

However, tl1e most important HPC parallel machines are now MIMD com
puters or some variant of tl1em witl1 distributed memory, and it is tl1ese
machines tlut provide tl1e fastest and biggest HPCs. Less powerful HPC is
offered by shared-memory machines. Algoritl1ms tl1at work well on distributed
memory maclùnes will also tend to work weli on iliese machines , but not vice

Conclusions 93

11ersa. If you wish to play safe, tl1en learn tl1e programming tecluùques needed
for distributed-memory MIMD. How to program tl1ese machines (and otl1er
HPCs) is tl1e subject of most of tl1e rest of tl1e book. Fortunately, tlùs task has
recently been made far easier by standardisation of tl1e principal parallel pro
gramnùng tools.

5 Programming vector
supercomputers

For over twenty years, most HPC was based on vector supercomputers. This
chapter describes in simple terms how to program this type of very simple
minded parallel hardware . It is the easiest ofHPC to handle but offers the small
est performance advantages. This chapter also tells a good HPC story about how
a program that used to vectorise and would have taken nine days to run can be
made to run in Jess than one hour.

5.1 Introduction

Until fairly recently (circa early to mid-1990s), ne<u-Jy ail the world's supercom
puting was based on vector supercomputing hardware . They are referred to as
vector computers because t11ey provide insu·uctions for manipulating vectors or
arrays of data. Instead of doing one aritl1111etic operation at a time tl1ey can do
many. Indeed, t11is type of machine still represents a very important part of the
HPC scene. Programming vector supercomputers is probably the easiest form of
parallel programming paradigm so far invented but also one tlut offers the
most limited speed-up possibilities . Nevertl1eless, it is one of the oldest forms
of parallel programming and tl1e most established, witl1 over twent:y-five years of
practical experience.

One oftl1e first computers to offer pipelining was tl1e CDC 6600 . In the fore
word to t11e documentation for tl1e CDC 6600 by J. Thornton, Seymour Cray
wrote in 1970 tl1at t11e CDC 6600 was 'one of tl1e early machines attempting to
explore parallelism in elecu·ical su·ucture witl10ut abandoning tl1e serial su·ucuu-e
of t11e computer programs. Yet to be explored are parallel machines with wholly
new programming philosophies in which tl1e serial execution of a single program
is abandoned'. The 'awesomely fast' CDC 6600 of 1970 was rated at about 1
megaflop, which was at tl1at time a really terrifie speed. However, it also needs to
be said that programming vector supercomputers witl1 few processors is prob
ably tl1e Jeast future-relevant, because dock speed limitations wi!J sooner or later
put performance strangleholds on t11is approach to HPC. However, all is not
lost, as it is likely tlut tl1e strategy of building multi-processor parallel machines
will increasingly be based on CPUs t11at are tl1emselves vector processors or have
vector-processing components within tl1em. Indeed, pipelining is appearing

The secrets of vector processing 95

increasingly in microprocessor hardware as a means of speeding up floating
point operations. So lmowing how to write efficient. ve~tor-processmg code ~s

also of benefit on many otl1er types of hardware as clups 111creas111gly use vector
processing procedures. Finally, most vector supercom?uters now offer mo~est
numbers of multiple processors . Discovering tl1e pnnciples of programmmg
ti1ese machines is a good place to start your career as a parallel programmer.

Like much of parallel programming, if you are going to be able to utilise vec
tor hardware properly you need to understand in general terms how it works,
since you are in tl1e clriving seat. OnJy you are really smart enough to know w~1at
your program is meant to be doing (as distinct from what it app~ars to be .domg
due to varions historical algoritl1mic improvements now lost 111 t11e m1sts of
time) so tlut you are tl1e best-placed person to alter it, if i:ecessary, to improve
its performance furtl1er but witl1out changing tl1e results it produces. The last
point is qui te fondamental. Your vectorised program has to produce . t11~ same
results as t11e unvectorised or scalar version else your attempts to vectorise it have
broken it! Fortunately, witl1 vector hardware t11e single most important cause of
'broken programs' is you wit11 an algoritl1111ic or logic error ratl1er tlu1'. due.ta
t11e hardware or software provided by ot11ers. As we shall see later, tlus is a mc.e
feature (since you know who is to blame if it does not work, i.e . yourself). Tlus
feature is not shared by other more adv<rnced forms of parallel hardware, where
ti1e causes offailure can be much more varied and harder to identif)1 (rnaybe you
or ti1e system or tl1e compiler, or more tlun one). Vector programming is a
cornparatively su·aightforward form of parallel programming. You should be able
to master t11e principles, if not instantly, witllin a small nurnber of hours.

5.2 The secrets of vector processing

Vector processing is a finely grained form of parallelism. It exploits parallelism
tl1at exists witllin a program at t11e level of tl1e DO loop . If t11ere are muluple
sets of nested DO loops t11en usually only tl1e im1ermost ones are vectonsed.
DO Joops are a very useful place to optimise performance because it is here
where nearly ail tl1e arit11metic computation talœs place witllin most programs.
The basic idea is to express tl1e important DO loops as vector statements when
ever and wherever possible . It is only tl1ese loops tlut vector hardvvare attempts
to speed up. The defulition of a vector in tllis context is a one-dimensional array.
It is a very simple-minded approach. If tl1e array has more tlun one dimens10n
ti1en tl1e innermost DO loop will reference a one-dimensional slice (or vector) of
it. It is t11is tl1at t11e vector processor optimises. For example , consider t11e fol
lowing fragment of Foru·an code. Let us assume tlut t11ere are four one
dimensional arrays (or vectors) x, y, z, p of dimension n, t11en

DO I =l ,N
X(I)=Y(I)+Z(I}*P(I)
END DO

96 Programming vector supercomputers

Here the arithrnetic statement

X(I) =Y(I) +z (I) *P(I)

is repeated n rimes. A serial processor would do sornething Iike the following:

•
•
•
•
•

•
•
•

set i = 1
load register 1 with value of y(i)
load register 2 with value of z(i)
load register 3 with value ofp(i)

mtùtiply contents of register 2 by contents of register 3 and put result in
register 4, i.e. z(i)*p(i)

add contents of register 4 to contents of register 1 and put result in x(i)
Now incrernent i = i + 1
Repeat the above n - 1 rimes

Note that a computer opera tes just like a calculator in that each register (or
memory on a calculator) contains only a single number. This serial execution is
not very clever, since the sa.me instructions are being repeated over and over
a.gain. In practice, . reality is seldom as bad as this example would suggest,
because most compilers would optimise register assignments and memory access
would be handled very efficiently via a cache and attempts made to overlap some
of the processing and memory reading and writing. However, t11e sa.me code run
on a vector processor would do sometl1ing quite different. Vector hardware has
vector registers, hence tl1e na.me. Each operation now involves not one value in
a register but up to 64 (on Cray vector hardware) . So in tl1e previous example
tl1e vector computer would do tl1e following:

•
•
•
•

•

Joad vector register 1 witl1 up to 64 elements of a.rra.y y
Joad vector register 2 witl1 up to 64 elements of a.rra.y z
Joad vector register 3 witl1 up to 64 elements of a.rra.y p

mtùtiply contents ofvector register 2 by vector register 3 and put tl1e results
in vector register 4 i.e. z(i)*p(i) for up to 64 values at a rime
add vector register 4 to vector register 1 and put up to 64 sets of results into
a.rra.y x

Usuaily, tl1e code rw1s up to ten rimes faster on Cray vector hardware tl1an corre
sp~nding.s~alar code as each vector operation produces one result per dock cycle,
wlllle chammg between tl1e fonction m1its allows overlapping of t11e Joad, multi
ply and add operations. On Cray hardware, tl1e arrays are split up into blocks of
up to 64 elements; on otl1er macl1ines, tl1is may be Iarger (1024 elements on
Fujitsu vector hardware) or smaller (ten on IBM hardware). The speeding-up
results from tl1e provision of special vector registers and vector opera.rions (such as
a.dd, multiply, sqrt, perhaps exp and log) that opera.te not on a single number at a
tune but on man y. If you are confused, tl1en try rereading Chapter 5.

The secrets of vector processing 97

A i1ice feature is that the Fortran code is tl1e sa.me for both scalar and vector
processors . However, it is handled by tl1e compiler and hardware very differ
ently. The fa.et tl1at tl1e Fortran code in botl1 cases is identical makes vector pro
cessing very convenient and easy to use as no massive code rewrite is needed, at
Ieast in tl1e first instance, altl1ough there are some statements tlut you need to
avoid if good performance is to be acl1ieved.

So vector para.Ile! programming is ail about exploiting parallelism at tl1e DO
Ioop Ievel. This needs to be emphasised, since vector hardware only does vec

torised Ioops quickly. Any scalar aritl1metic tends to be unremarkable by com
parison; it is still fast, but much slower, wl1ile integer arithmetic is often best
avoided altogether; i.e. recode integers as reals. Likewise, vector processors are
designed for floating-point aritl1111etic, so text processing n1ight not be a good
idea. Varions resu·ictions or nùes also apply that define whether a DO loop will
vectorise. Once upon a tirne, you had to fiddle a.round with your code to force
or re -express it in a suitable vector form . Toda.y, compilers are much better at
doing tl1e resu·ucniring for you, more or Jess automatically, wlllle retaü1ing the
origü1al logic üli1erent ü1 your code. However, be aware that tl1ese compiler
modifications ma.y not be as efficient as if you redesigned tl1e offendü1g non
vectorisable loops by changing t11e logic of the underlyü1g algoritl1111 to empha
sise its vectorisable features . The compiler 01liy u·anslates the code you give it
and produces revisions that are logically identical to tl1e origü1al. As a result, tl1is
may not always yield optimal performance, but tl1e answer will be tl1e sa.me.
With a Iittle algoritl1111ic retl1ülic you may be able to do much better yourself.
However, it depends on how much time you wish to üwest ü1 code optimization
and whetl1er tl1e effort is Wcely to be wortl1 wl1ile. So it is very useful to know
what to avoid and what to concenu·ate on when writing code for vector proces
sors (or indeed for most modern serial processors).

Vectorisation on most ma.dunes 01liy applies to one of a set of nested DO
loops . It usually 01liy works at tl1e innermost DO loop level, and the DO loops
have to conform to certain conditions. Typically, a DO loop will vectorise if tl1e
following conditions are met:

1 all calculations witl1in tl1e loop for one value of tl1e loop index i have no
implicit or explicit dependency on any previous value of i; and

2 all calculations üwolving variables wl1ich depend on i can be performed
simultaneously.

Anotl1er way of expressing tl1ese conditions is to ask tl1e question, can tl1e aritl1-
metic operations witl1in a DO loop be performed ü1 random order and still pro
vide tl1e sa.me result. If tl1e answer is 'yes' tl1en it will vectorise, and it will also
be recog11ised as a para.ile! DO loop on a shared-memory macl1ine. If tl1e answer
is 'no' tl1en it is neitl1er para.lie! nor vectorisable, and maybe you should consider
changing it.

There are several otl1er aspects tl1at may ü111ibit or stop vectorisation, depend
ing on tl1e compiler and tl1e hardware. These ü1clude :

98 Programming vector supercomputers

1

2

3

4

5

6

7

8

backward recursion or dependencies on previous values of a vector nearly
always cause problems, although the compiler and/or you may be able to
fi_,--:: them by changing the code; examples of this type of problem are as
follows:

x(i) = x(i)/x(i - 5) + x(i)/x(i - 4) + x(i)/x(i - 3)

x(i) = x(i + 10)/y(i)

x(i) = l.S*x(i - 1) + 0.7*x(i - 2) + O.S*x(i - 3)

conditional statements (i .e. ifs) may cause problems, although Jess so than a
decade ago due to improved compilers, but they may still slow down
execution speed because extra work is involved·

branching out of loops tends to cause major cÙfficulties despite its obvions
utility;

complex subscript calculations can also cause problems and slow down
memory access, which in turn reduces the amount of arithmetic being
performed;

scatter and gather operations on sparse arrays are at best inefficient and at
worst will ruin performance even if they vectorise; for example, try to avoid
code such as

x(i) = y(ip(i))*45.6

x(ip(i)) = y(j)*45.6

loops with FUNCTION and SUBROUTINE calls within are not vec
torised '. although many compilers may resolve the problem for you by
expandmg the code in-line, although this may then change the definition of
the innermost DO loops;

some mathematical library fonctions may inhibit vectorisation, so check the
documentation; and

integer arithmetic often tends to be done slowly as there may be no vector
integer registers, in which case you may have to recode integers as reals if
they are used in arithmetic statements instead of just for addressing arrays or
in DO loops.

In addition to these requirements, there will also be several other characteristics
that may well enhance vector performance. Particularly important are:

1

2

sufficient arithmetic work in the loop to keep the vector-processing units
busy;

a high ratio of computation to memory access 1s helpfol if it can be
arranged, for example by merging DO loops;

3

4

5

Vectorising your code 99

you need a large fraction of the computationally intensive part of the pro
gram to vectorise, or run rimes will be dominated by the serial parts in
accordance with Amdalù's law;
long DO loops are better than short ones, and maybe you will need to
restructure your code to ensure that the longest loops are the innermost
ones; and
look for and use any locally optimised versions of standard libraries; e.g . the
BLAS library of matrix operations is widely available and is often optimised
by vendors for their hardware .

Vectorising code is also worth while because it has a hidden benefit! Many
microprocessors now use pipelines to speed up their arithmetic operations.
These pipelines 'stall' for most of the same reasons that causes difficulties to a
vector supercomputer. Code that is altered so that it vectorizes on vector hard
ware will also often run faster on all types of machines including workstations
and PCs. So the effort may well be very worth while; see Dowd (1993).

5.3 Vectorising your code

Lrndau and Füùc (1993: p. 303) offer this advice: 'The easiest path is to change
nothing yourself and let the compiler do its job. The next easiest is to remove
your own persona! utility routines and used vectorized library routines (written
by people who are paid to do that kind of stuff)'. So look for the BLAS library
optimised for your hardware. However, you do need to review what the com
piler has done to your code in case you can identify forther improvements, or
maybe it has missed some vectorisable loops for whatever reason. Alternatively,
ma y be the levels of performance are now sufficient and you can stop. There is no
point in spendü1g weeks of effort that gain you another 5 per cent off a run rime
that is already acceptable. 011.ly if a more dramatic speeding-up is needed should
you seriously consider fiddling with your code. However, many GIS applications
will probably not use many standard fonctions included in the BLAS library and
equivalents, so the anus is more firmly put on the programmer to learn enough
to perform most of the vectorising and nulli1g themselves . The first area to look
for improvement is in your use of subscripted variables, vectors or arrays, bear
ing in mind that not every subscripted calculation can benefit from vector
hardware and there are limits to what vectorisation can deliver in terms of
speeding up .

Remember also that Amdahl's law applies to vector processing. Total program
execution rime (T) is decomposed as follows :

T = T.crial + T..·ccror

The larger T..·cccor becomes relative to I;criaI the greater the potential for improve
ment in speed. However, the potential is limited; e.g.

100 Programming vector supercomputers

for 2 times the scalar performance then Tvwor needs to be 50 per cent of total T
for five times the scalar performance then 'F_,ccror needs to be 85 per cent of
total T

But remember that it is not possible to escape completely from Amadhl's law by
malcing the problem size larger, as the maximum speed-up is limited to five-ten
times by the nature of the vector-processing hardware . So a speeding-up of5-10
times is about the best you can expect from single-processor vector hardware.

Now a speeding-up of five times does not seem much, but historically it has
been very significant. It is useful to note that most other components on a vec
tor supercomputer are designed for speed, and in the early workstation era
(before about 1994) these relative speed improvements were extremely useful
and of great practical significance in many areas of computational science. For
example, in the early 1980s a Cray I vector supercomputer would be offering a
performance gain of up to two orders of magnitude compared wi th a fast main
frame . In the mid-1990s, your workstation is probably running at a faster speed
than a Cray J90 single processor without recourse to any visible vectorisation. In
short, the era of the HPC based on vector supercomputing with a single or a
small number of expensive high-performance vector hardware CPUs has prob
ably ended. Soon dock speeds limit will reach some maximum beyond which
it will be either uneconomic or infeasible to proceed. It is, however, only fairly
recently (mid-l 990s) tl1at tl1is has occurred and the era of highly parallel MIMD
supercomputing has matured sufficiently to become a viable practical alternative
to vector processors. The problem, as ever, is tl1at tl10se witl1 t11e largest invest
ment in vector code (built up over many years) will still want more vector hard
ware to preserve tl1eir software investment and to avoid having to port and tlms
rewrite and often redesign many of tl1eir algoritluns for a purely MIMD world.
It is hoped t11at this changeover will be short-lived. Fortunately, it is far less of a
problem in geographical applications of HPC, due to a lack of previous vec
torised software.

5.4 Optimisation of performance

5.4.1 A thirst for speed

It is useful to remember tl1e reasons behind tl1e use of vector parallel program
ming, which are shared by the rest of HPC. It is presumed tl1at:

1 you have a problem of such computational intensity tl1at it will not run to
completion on a PC or workstation in a reasonable lengtl1 of time (or at all);
this is a moving target as workstations become faster and reflects tl1e extent
of your patience;

2 that the problem is sufficiently important or significant to justify tl1e expen
diture and investment of considerable programming effort to resolve it; and

3 that tl1e science is of sufficient quality (i.e. internationally competitive alpha-

Optimisation of performance 101

plus-rated science as judged by relevant peer reviewers) and urgent enough
to be allocated time on an expensive and t:ypically scarce national supercom
puting resource, which will usually be over-allocated.

Having met t11ese criteria, tlK next stage in your HPC adventure is obtaining tl1e
maximum possible speed. Sorne equate faster computers witl1 better science.
Otl1ers might argue tl1at witl10ut faster computers you caimot solve some prob
lems at all. You should realise tl1at program performance optimisation is one way
of simulating a faster computer witl1out really having to buy one! HPC is a drug.
Its junkies are usually fascinated by t11e challenge of gaining access to more sup
plies ofHPC and tl1en code twealcing to induce astate ofintellectual euphoria and
self-satisfaction. Well, maybe tl1is is a slight exaggeration, but tl1ere is certainly
some trutl1 in it. We know because we have been t11ere! The good news is tl1at tl1e
effects are not lasting, ai1d it certainly delivers some good science ai1d irmovative
reseai·ch as a by-product. It cai1 also be intense fun as well as hard work!

5.4.2 Tales about going faster

So a prime purpose of vector processing and HPC is tl1e need for more com
puting power or speed. You want t11e best possible performance. If you are a
geographer or social scientist you probably also need to demonsu·ate to curions
onlookers tl1at (1) you know what you are doing and (2) you can obtain levels
of performance at least as good as ot11er sciences ai1d ideally better tl1an average.
So ifyou have a problem of sufficient importai1ce to requin a vector supercom
puter then cleai·ly you will want it to perform at tl1e highest possible level.

A common rule of thum b is tl1at in a typical prograi11 10 per cent of tl1e code
will consume 90 per cent of t11e computing or CPU time; or so you 110pe!
Otl1ers talk of ai1 80-20 per cent rule. If tl1e program is complex ai1d long tl1en
maybe you will have to hope tl1at tl1e critical parts ai·e small. It is tlus 5-20 per
cent of code tl1at is wortl1 streamlining. Kernighan ai1d Plauger (1974) suggest
some additional maxims: (1) do not botl1er fiddling around witl1 minor changes;
instead, consider improving tl1e pro grain by fin ding a better algoritl1111; ai1d (2)
let tl1e compiler do t11e simple optimisations of expressions, etc . for you so tl1at
all you need to do is to malœ it easy for t11ese to be recognised.

Bentley (1986) reinforces tlus point by way of an exai11ple . He quotes Appel
(1985), who succeeded in reducing t11e nm rime of a program from a year to a
day by speeding up his serial code by a factor of 400; see Table 5.1. However,
speeding up is not free, and tlus task took several montl1s of Appel's rime; but
seemingly it was very wortl1 wlule, ot11erwise tl1e program could not have been
run. However, as hai·dware becomes faster tl1e benefits of a few orders of mag
nitude speed-up become less. So it is possible tl1at Appel's original code would
now run 200 rimes faster on a workstarion even witl1out his tunir1g efforts,
because hardware has improved by about tllis amount. However, it would have
been of no use saying to Appel ir1 1985, 'well why not wait ten yeai·s before run-
11ing your program!' This is being too wise after tl1e event, and also a code tl1at

102 Programming vector supercomputers

Table 5.1 Appel's speed-up of a program.

Nature of changes

new algorithm
algorithm nming
data strucmre reorganisation
single precision arithmetic
recoding a routine in assembler
faster hardware

Total Speed-up

Source: Bentley (1986).

Speed-up factor

12.0
2.0
2.0
2.0
2.5
2.0

400

wmùd have taken a year to run on a minicomputer in 1985 was clearly unusable
unless the task being performed could justif)r a dedicated computer and the users
were amazingly patient in waiting for the result.

The simplest problem of ail to speed up is where a complete algorithm can be
replaced in its entirecy by a vastly superior alternative. The classic example is
sorting large arrays of numbers . The best metl1ods may take seconds, t11e
worst weeks! There is a danger of being HPC-myopic. If, for example, a
point-in-polygon metl10d talces on average 0.01 seconds per point and you have
10 million points to assign to 200 polygons, do you:

1 tlünk of applying for rime on a faster computer so tlut tl1e same metl10d can
be made to run five-ten rimes faster; or

2 apply for rime on a parallel processor with 512 processors so you can gain a
speed-up of 512 rimes; or

3 tlünk ofusing a different algoritl1111 and/or retlünk how it is being used so
tlut tl1e problem can be run on a workstation in much Jess rime· or

4 decide tlut you can afford to wait for the original metl1od 'to run to
completion.

Options (1) and (2) should only be seriously considered if (4) and possibly (3)
turn out to be impracticable. In tl1e case of tl1e point-in-polygon problem tl1ere
are some very fast routines tlut can be made to run even faster by pre-classif)ring
tl1e data by müümum area rectangles before performing a point-in-polygon
retrieval. HPC is no substitute for a better algoriilim or for tlünking about tl1e
problem. Only if tl1ere is no obvions simpler alternative should you consider it .

Code tuning can also easily become an all-consuming obsession because of
tl1e intellectual challenge that is involved. You can measure progress and tl1e goal
is clearly if ratl1er fozzily identified (i.e. shorter run rimes), but tl1ere is no way
of k.nowing when to stop, because tl1e best performance tl1at can be obtained is
an unlrnown. Nevertl1eless, it is important. Turton and Openshaw (1996) report
even better results for a geography code tlun Appel (1985). They st;u-ted witl1 a
spatial optimisation mode] code tlut used an embedded spatial interaction
model to optimise a retail profit fonction; see, for example, Birlcin et al. (1995).

Optimisation of performance 103

The qualit:y of the result depended on calcula ring tl1is profit fonction for as many
alternative solutions as could be computed in a reasonable lengtl1 of rime. The
original code was run on a workstation using an old algoritl1111 tl1at may not have
produced tl1e best result but was computationally feasible as it did not take too
long to run . Birlcin et al. used a parallel supercomputer (tl1e CM-200) to speed
it up, allowing use of a potentially improved optimiser. Turton and Openshaw
(1996) ported tl1e problem on to tl1e Cray T3D and tl1en sought to optinüse its
performance on a single processor before ru1111ing it on many. The results are
very relevant here, especially as tl1ey managed to aclüeve a total speed-up of 2.8
million rimes, ofwlüch a factor of only 256 came from using a Cray T3D paral
lel computer (witl1 256 processors) and a massive factor of 1096 by changing
tl1e way tl1e embedded spatial interaction model was calculated. Clearly, tl1e
performance gained depends on tl1e initial performance benchmark and tl1e
extent to which specific application knowledge can be applied to ilie problem.
Nevertl1eless, tlüs work required tl1ree person-montl1s of effort because tl1e
improvements necessary to achieve a clramatic result are seldom self-evident. In
this case, most of the model's computations turned out to be unnecessary as
many of tl1e intermediate calcula rions could be updated ratl1Cr tlun recomputed
each rime. However, such an observation often requires a good chunk of luck or
a lot of effort. The results tl1ough can be spectacular. They serve to demonst:rate ,
yet again, tl1at algoritl1111 changes are by far tl1e most effective way of speeding
up code. Only then do you start to consider tl1e additional benefits to be gained
fr·om HPC. In tl1is example, vectorisation would not have worked on tl1e opti
mised code, because the performance gain resulted from a dramatic reduction in
tl1e arnount of floating-point aritl1metic being performed. What was left was no
longer vectorisable, yet the performance of tl1e revised program ;vas broadly
what a teraflop vector processor (if one could be built) would have managed
witl1 tl1e original code. We will return to tl1is point later.

5.4.3 Ossifying the past

In essence, porting is seldom a pure translation task, altl10ugh tl1is is often how
it is regarded. There is a danger in ossif)ring inefficient algoritl1111s by porting
tl1em unchanged on to faster hardware. Porting should be an opportunity to
retl1ink tl1e critical chunks of code tlut marrer most. Imagine how embarrassing
it would be to ask for two weeks of rime on tl1e world's fastest supercomputer
only to discover tl1at it could have been run in 10 minutes on your workstation!
Or, putting it anotl1er way, you may be able to emulate tl1e performance of inef
ficient code on a not-yet-built multi-teraflop maclüne costing many tens of mil
lions of pounds by writing efficient code for tl1e workstation tl1at you already
own! However, tlüs quest for speed and performance is best justified when bet
ter science or more science or even some science can be performed because of it.
The speeding-up in tl1e performance of tl1e spatial optimisation problem allowed
a different optimiser to be used and tlrns obtained better-qualicy results (i.e. bet
ter science). In tl1ose areas where faster me ans better science the case is more

104 Programming vector supercomputers

easily proved. In many potential geography applications, the challenge is differ
ent in that high performance is needed purely to malce the application possible
on hardware that is typically not qui te up to the task being presented to it or via
the use of algorithms that are high.ly inefficient. However, if you succeed too
well in improving algorithmic performance then the case for using HPC either
disappears or is changed! This is of course an ideal outcome, because it then
allows you to make greater use of the code on many more machines and also to
consider using some of the 'saved' computing time to improve the quality of the
results by doing more computation, which was previously completely out of
the question . For example, if you can now run a mode! ten thousand times in
the same time that you could once only run it once, then use some of the ten
thousand possible mode! calculations to compute confidence intervals (via a
bootstrap, see Chapter 2) or to investigate issues such as error propagation via
Monte Carlo methods (this would use up probably al! the saving but yield a bet
ter quality of result) . It is important not to stand still. Faster computing runs
previous tasks more quick.ly, but it also creates new demands for even more com
putation to improve the quality of the results, to handle larger problems and to
allow the use of better or more robust algorithms .

However, you should not be using supercomputers for problems that do not
need it, and problems that need HPC now may not need it in five years time,
when your workstation will run that much faster. That is great, because HPC
allows you to research, develop and prototype applications now that soon will
not be so dependent upon it. The problem is that supercomputing usage can
easily become an exclusive club for macho science. You are special because you
use a supercomputer, but in reality this may also be a sign that your code is
grossly inefficient and your algorithms are totally pathetic! The national super
computing centres tend not to dwell much or at al! on these latter aspects,
emphasising instead the need for more computational power to remedy in
at least some cases undiscovered (or hushed-up) inefficiencies in the codes
being used.

5. 5 A case study in vector processing using the Mark 1
geographical analysis machine as an example

5.5.1 Some background to the GAM

The geographical analysis machine of Openshaw et al. (1987, 1988) might be
regarded as a first-generation geographical data-mining tool. It is a spatial data
base explorer based on a very simple principle. It uses a brute force search
method to malce up for the ignorance of not lrnowing where to look or what to
look for by looking everywhere for evidence of localised clustering in two
dimensional spatial data. This exhaustive map search strategy made it very com
putationally intensive; indeed, it is a very fragile technology from a computing
feasibility perspective. The search is exhaustive, so if you increase the search load
by increasing the number of locations being examined or use higher-resolution

Case stud)' in vector processing using QAM/1 as an example 105

spatial data with more data points then the computing rimes may become
unbearable even though it is a naturally parallel process . The GAM is of interest
here because it was one of the earliest geographical applications that ran on Cray
vector processors.

The GAM also cause many problems, not al! of a HPC nature. It was an
attempt to compute a solution to a problem that many people did not even
appreciate existed. In 1986, the notion of a geographer running a seemingly
powerful mainframe computer for weeks at a time on the same problem was dif
ficult for some to accept, particularly if the underlying justification was in terms
of a seemingly discreditable inductive technology - an early case of spatial data
mining, or what some critics at that time called data dredging! Additionally, the
concept of an 'analysis machine' was a high.ly emotive issue that was difficult for
some people to relate to; maybe it still is! An 'analysis machine' implies an
automation of rare statistical analysis skills, and this may appear to be a threat to
those who possess such skills. It is also important to avoid undue excitement
when reporting the results of such analysis machines, especially when applied to
disease data as the results could be spurious, for example created by errors in the
data being processed. There is still a need for independent validation no matter
what method is used and regardless of how much computation is performed.
The restùts of this type of search are essentially descriptive, focusing on patterns
rather than process. However, the original GAM results were more or less cor
roborated, although subsequently described by some critics as being exu·emely
obvions! There is now little doubt tl1at the GAM \Vas a major advance and that
there are many different heuristic searches tl1at could be developed to handle
tlus problem; see, for example, Besag and Newell (1991) and Openshaw et al.
(1 989). Yet tl1e GAM can be credited witl1 tl1e discovery of tl1e putative
'Gateshead cancer cluster', and tllls may well be one of tl1e few real acluevements
of spatial epidemiology since Snow's work on cholera in tl1e nineteentl1 century;
see Openshaw (1990, 1991). Soit may be claimed that tl1e GAM did provide
useful insights into tl1e database being investigated. Subsequent versions of tl1e
GAM are more intelligent. The latest GAM/K version has cluster recog1ution
rules built into it; see Openshaw and Craft (1991). Subsequently, tl1e
International Agency for Research on Cancer (IARC) conducted a blind test of
varions cluster-hunting metl1ods, including a GAM using fifty syntl1etic data
sets. The results showed that tl1e latest GAM version (GAM/K, described in
Openshaw and Craft, 1991) worked best of all; see Alexander and Boyle (1996).

The problem is that tl1e original version of GAM/K ran on a Cray Y-MP. It
required a large amount of computing resource, it was non-portable and tl1e
code was never made widely available. The GAM needed vector supercomputers
such as tl1e Cray to cope witl1 tl1e computational task. It would run even better
on a parallel supercomputer because of the implicitly parallel search process, but
tl1ese machines were not tl1en eitl1er sufficiently powerfi.ù or stable enough to be
considered as serions contenders. The GAM is tl1erefore a good case study on
which to practise parallel programming skills. It is also still a most useful tech
nology for exploratory spatial analysis in a purely geographical space.

106 Progrnmming vector supercomputers

5.5.2 GAM/1 algorithm and Fortran code

The GAM searches for evidence of localised clustering in point data. Assume
you have a set of points (or small areas) located on a map with x,)' coordinates
and that for each point you have t\vo counts representing the incidence of a dis
ease (or something else of interest) and a measure of the population at risk. The
original Mark 1 GAM, circa 1985-87, was used to analyse childhood leukaemia.
It was based on the following algorithm:

Step 1: Define a study region

Step 2: Define an arbitrarily small circle, radius r, talcing into account the spa
tial resolution of the data

Step 3: Cover the study region with a two-dimensional grid with a mesh size
set at 0.2r so that the circles overlap by a large amount in an attempt
to incorporate a sensitivity analysis to handle edge effects and data
uncertainties

Step 4: For each circle located on a grid intersection retrieve a population at
risk count (i.e. children) and incidence data (i.e. cancers) from a spatial
data base

Step 5: Compute the probabilit:y of an excess cancer rate under a Poisson
assumption

Step 6: Display 'interesting' circles on the map, viz. those with a small prob
ability of being a chance event

Step 7: Repeat for a.li circle locations defined by the two-dimensional grid
Step 8: Repeat Steps 3-7 for a range of circle radii (e.g. 1, 2, 3, 4, 5 ... 50 km)

considered to be of potential interest.
Step 9: Map the significant circles

The GAM/l algorithm is really quite simple, and when programmed simply in
Fortran (or any other language) it consists of a series of nested DO loops; see
the program listing in Appendix 5.1. The critical DO loops are:

Loop 1: Do RADIUS = RADMIN, RADMAX, RADINC
Loop 2: Do CY = MIN_y, MAX_y, Y_INC
Loop 3: Do CX = MIN_X, MAX_X, X_INC
Loop 4: Compute population and cancer count for al! X,Y points inside circle

at (X,Y) of size (RADIUS) and write it out if there is an indication of
an unusual number of cases according to some significance test.

Typical DO loop ranges if data for ail the UK are used based on 1991 census
enumeration districts are as follows:

Loop 1: Do RADIUS = 1,50,1
Loop 2: Do CY = 1,1209,RADIUS*0.2
Loop 3: Do CX = 1,650,RADIUS*0.2

Loop 4:

Case stucly in vector processing using QAM/1 as an example 107

Compute population and cancer count for ail X,Y points inside circle
at (X,Y) of size (RADIUS) and write it out if there is an indication of
an unusual number of cases according to some significance test.

It is qui te clear then that Loop 4, will be executed a very large numbei: of time_s.
AJso in Loop 4, the easiest way of determining whether a data pomt h~s w1th111
a circle Jocated at centroid CX,CY of size RADIUS involves the followmg com
putation to calcula te the distance of each of the N points from the centre of the
circle . So within Loop 4 the following code is executed a very large number of

rimes:

OBSP 0.0
OBSC
DO I

0.0
1,145,716

DIS = (X(I) -CX) **2 + (Y(I) - CY) **2
I F(DIS.GT.0.0) DIS SQRT(DIS)
IF(DIS.LE.RADSQ)THEN

END DO

OBSP = OBSP + P (I)
OBSC = OBSC + C (I)
END IF

In this example, X(I), Y(I) contain the x,y map coordinat~s used to represent
the location of the Ith census enumeration district: P(I) 1s the population at
risk for the Ith point, and C(I) is the cancer count for the Ith point. Note
that there is an assumption here that the cancer data have been aggregated _to
census enumeration dist1·icts. In the UK, 145,716 census enumeratlon dis
t1·icts are represented as point data . If higher-resolution po_stcode data h~d
been available then this would have increased to about 1.6 million, or 32 mil
lion points if the Ordnance Survey's address point data for individual
addresses had been used.

5.5.3 Code tuning and performance optimisation

The program is vectorisable but only within Loop 4, where 145,716 distance
calcula rions would be performed. The problem here is that the amount of anth
metic being performed is not partieti!a.rly high compa.red with the amount of
memory addressing going on. For example, the statement

DIS =(X(I) -CX)**2 +(Y(I) -CY)**2

has only two subt1·actions, one addition and two squares for five memory
accesses. This is a typical feature of many geography and GIS codes, and essen
tially there is not much that can be clone about changing it. The only feas1ble
alternative is to change the algorithm.

108 Programming vector supercomputers

Let us start with the code in AppendL\'. 5.1. How do you go about tuning it?
Weil you begin by timing it, i.e. measuring the performance of the program on
a realistic but reduced size or small problem, one small enough to allow you to
experiment with varions changes to the code while still being representative of
the program. The process is described by the following sequence of steps.

Step 1:

Step 2:

Step 3:

Step 4:

Select a representative but simplified version of your problem that does
not take too long to run.

Decide whether the code is worth improving or needs replacing. Does
the run rime need to be substantiaily reduced or just fine-tuned here
and there?

Time it as it is, examine profiling details, identify slow loops and think
about how performance might be improved by changing the code.
If it seems that only fine nuùng is needed then start to fiddle with the
composition of DO loops and experiment with varions code changes in
an attempt to find better results on given hardware. Dowd (1993)
offers many useful optimisation suggestions.

Yon should stop as soon as the predicted full production run rimes can be
regarded as acceptable, otherwise you may end up wasting vast amounts of rime
and effort for no useful level of benefit. Landau and Finie (1993: p . 277) also
offer some useful general advice: 'A survival tool known as common sense dic
tates that you concentrate your effort vectorizing those loops that matter most'.
The nue is to do as little as possible beyond that which is necessary. Otl1erwise,
you end up witl1 a program tl1at no longer works because you fiddled around
witl1 it so much tl1at you introduced one or more bugs. More seriously, a law of
diminishing returns sets in whereby tl1e last few percentage points of improve
ment require a mammoth amount of effort. There is little point in worrying
about sections of code tl1at absorb very little amounts of CPU rime or are only
done once (i.e. input or output). Instead, go for tl1e biggies first! Finally, you
only do this tuning ifyou have to in order to allow tl1e program to run to com
pletion on real problems and/or iftl1e code is important and ofinterest to mul
tiple users. Otl1erwise, it is a monumental waste of your effort and some one
else's supercomputer rime while you fiddle. Also remember tl1at today's super
computer is tomorrow's workstation, so you should try to ensure tl1at tl1e fine
nming of tl1e code is not too hardware-specific and is portable.

One useful suggestion is to look for oppornmities in time-critical sections
whereby you can replace DO loops by locally optimised subroutines in tl1e
BLAS library (optimised for a particular machine) or any otl1er generally avail
able performance library. However, avoid altering your code solely so tl1at BLAS
can be used if it involves extra work, since typically you do not gain much from
B~S (probably Jess tl1an a factor of two over your original code). Additionaily,
av01d usmg any routine tl1at is unique to one vendor's hardware; it just causes
problems later when you wish to move tl1e software to a different machine or
you want versions to run sin1ltltaneously on multiple machines and PCs.

Case study in vector processing using QAM/1 as an example 109

It is also wortl1 noting tl1at a highly complex code often depresses perform
ance on vector machines and make tl1e compiler's job harder. Simple code is
often best and is also quickest to program and debug. So talœ out tl1e strucnired
programming you once learned! Consider moving subroutine bodies in-line
if tl1ey are cailed millions of rimes. Look carefully at highly complex nested
if-tl1en-else statements. Malœ tl1e code simpler and ease tlie compiler's task of
optimising it for you.

Step 5: If fine ttming is insufficient tl1en consider how to improve tl1e algor
itl1m or what otl1er alternatives may exist. Yon only really discover tl1at
fine nming is insufficient when it fails to deliver tl1e performance gains
tl1at you believe you need! To do tlus algorithnuc change you need to
switch your gaze from a local tactical DO loop level to a more strategic
view of what is going on.

On tlus GAM/l problem, most of tl1e CPU rime is in Loop 4, wluch does
tl1e spatial data retrieval. A typical run would do tl1is data retrieval loop 50 X

6045 X 3250 rimes, each involving 145,716 distance calculations. Tlus is a
lot, even for an HPC! Openshaw et al. (1987) knew tlus and used a KDB
tree to optinuse spatial data retrieval rimes on a serial mainframe.
Unfornmately, KDB trees are complex recursive data strucmres that do not
vectorise at ail! As a result, a completely different spatial data retrieval metl1od
had to be invented. The otl1er difficulty at tl1at rime was tlie restricted mem
ory size of tl1e Cray X-MP, which prevented tl1e data being stored as simple
arrays. The problem was not just tl1e storage of X, Y, P and C vectors (each
of 145,716 elements) but it also needed to store 501 randonused set of C
values, wluch were used in tl1e GAM/l to assess multiple testing effects.
Accordingly, tl1e Cray X-MP version of tl1e GAM/ 1 used a complex hash
look-up to define tl1e data located in tl1e region of the circle . The data was
tl1en packed to conserve memory using Cray subroutines PACK and
UNPACK. Ali this produced a lughly complex code tl1at was very efficient,
but as Cray Y-MP memories increased in size rnuch of tl1e compression work
may no longer be necessary. It also made tl1e program Cray-specific and
totally non-portable. It was even harder, a decade later, to rernember ail the
intricacies of such a cornplex algorithm.

It is sensible to start again and to write tl1e simplest possible GAM/l cod
ing, wluch is what we do here. After al!, to work well with a vector processor
you only need to ensure tl1at tl1e code is in a highly vectorised form where
most of the calcttlation occurs . The GAM/ l code is already lughly vectorised,
so not much effort is needed to port it to a vector supercomputer. In fact, by
far tl1e hardest part is understanding how to use a remote alien machine, but
even here tlie muversality of tl1e Unix operating system now helps t:remen
dously. The GAM/ l code in Appendix 5.1 was written on a Sun workstation
and ported witl10ut change on to a Cray J90 vector supercomputer at tl1e
Edinburgh Parallel Computing Centre in the UK. It worked first rime.

110 Programming vector supercomputers

Table 5.2 Vector processor resu!ts for the initial GAM/l code on a single Cray
J90 processor.

CPU time in seconds
Mflops

Vectorisation off

2416.5
9.4

Vectorisation on

246.7
93.9

A sample representative problem for the tuning work was arbitrarily defi.ned
as one which involved 6000 circle calculations for a 10 km radius circle. This
was small enough to be run on a Sun workstation and seemed reasonably
representative. This is important, because you need to be able to verif)r the
results to ensure that code changes do not alter the answers being obtained
by running on both a workstation and a supercomputer. The code in
Appendix 5.1 produced the results shown in Table 5.2 for the Cray J90 using
a single processor.

The code achieves 93.9 mflops (million floating-point calculations per sec
ond), which is just Jess than 50 percent of the theoretical maximum of a single
]90 processor. However, this is probably about as much as you will achieve with
many geography codes because of the typically high ratio of memory activity to
computation. For instance, it has already been pointed out that inside Loop 4,
which is vectorised, there are six memory reads and six floating-point operations.
The sgrt subroutine is not included in the mflop count (for some reason).
Nevertheless, this is a level of performance that would be regarded as good. But
is it good enough? Certainly, the biggest DO loop is the innermost one . There
are no data dependencies, it vectorises very well, and the loop length is at the
maximum for this application. Ali the hot spots are vectorised . So is this good or
bad? There is probably nothing else in the code listed in Appendix 5.1 that
is worth changing. The subroutine call to calctùate the Poisson probabilities is
unimportant as it is called infreguently, while the input and output parts are
one-offs.

It is certainly very tempting to stop here on tl1e grounds tl1at 93.9 mflops is
good for a single Cray J90 processor in tl1e mid- l 990s, and tllis level of perform
ance is not embarrassing. However, the problem is twofold:

1 a full GAM/l run would take an estimated 8.9 days of CPU rime on Cray
]90 which might be difficult for geographers to obtain; and

2 tl1ere is concern tlut tl1e program merely succeeded in vectorizing a very
inefficient algoritl1111 for spatial data retrieval by a supercomputer?

Following tl1e advice offered above in Step 4, it is possible to set about nuling
tl1e code. Now tl1e secret is not necessarily to vectorise everytlüng in sight . Here
tl1ere is nothing left to be vectorised in any of tl1e hot spots. So ail tl1at is left to
do is to try to minimise tl1e amount of aritl1metic work being carried out. This
is helpful, because not all floating-point operations talce tl1e same amount of

Case stud)' in vector processing using QAM/1 as an example 111

CPU rime to perform. Typically, addition and subu·action are tl1ree rimes faster
tlun multiplication or division (and division is often slower tl1ai1 nmluphcauon),
while matlKmatical Jibrary fonctions such as SQRT or EXP or LOG can be fift:y
or more rimes slower tl1an multiplication and 150 rimes or more slower tl1ai1
addition or subu·action. So an obvions modification is to remove tl1e SQRT
from tl1e code, wllich also gets rid of an IF statement. This is easily d~ne by
using RADIUS sguai·ed ai1d distance squared instead of square - rooui~g 1t. The
results ai·e identical, ai1d it should produce more efficient code . So Version 2 was
produced, wlüch has tl1e following chai1ges:

Loop 4: Compute population and cancer count for each circle

RADSQ = RADIUS*RADIUS

OBSP 0.0

OBSC = 0 . 0
DO I = 1,145, 7 16
DIS = (X(I) -CX) **2 + (Y(I) - CY) **2

IF(DIS . LE . RADSQ)THEN

END DO

OBSP = OBSP + P(I)

OBSC = OBSC + C(I)

END IF

The result is a factor of about 4 reduction in CPU rime. Tlüs is guite a lot and
very helpful, as it reduces tl1e total run rime to an estimated 2.3 days! A usefi.~l
move but it is still 2. 3 days of CPU rime on a supercomputer. What happens 1f
you " ;ant to run tl1e GAM on fi.fty different data sets? So what e.lse ca~1 be ~one?

Weil, using 32-bit ratl1er tlun 64-bit precision on a workstauon will typ1cally
speed up t11e run rime by Jess tl1an a factor of 2. I~ is usefül to remember tlus
u·ick, especially if 64-bit precision is not needed, as mdeed 1s tl1e .case her.e. lt 1s
possible here because al! tl1e points affected by round-off error ~1. tl1e distance
calculation are so far away from any circle tl1at tl1e Jack of prec1s1on does not
matter in tl1e GAM. Single precision offers two kinds of speeding-up, assuming

tl1at it is done by tl1e hardware:

1
2

faster computation; and .
a doubling of memory bandwidtl1, tlms improving cache effi.c1ency because
only 32 bits are being used instead of 64.

This single-precision GAM is called Version 3. Unfornmately, tlüs does not help
on a J90, since on tl1is machine single precision is 64 bits! It wmùd, however, do
better on a 64-bit word size workstation.

We can consider <Ùtering tl1e code to remove the last IF statement and use
BLAS routines, wllich will have been optimised for the J90 (by now!.)
Unfornmately, t11is involves performing additional aritl1metic. Nevertl1eless, 1t

112 Programming vector supercomputers

might just be worth investigating in case the last surviving IF statement is caus
ing some slowdown in execution. Version 4 involves the following changes:

Loop 2:

DO CY = 1,1200,RADIUS*0.2
DO I = 1, 145716

Loop 3:

YY (I) = RADSQ - (Y (I) - CY) * * 2
END DO

DO ex= 1,650,RADIUS*0.2

Loop 4: Calculate distance of ED at X(I), Y(I) from grid point CX,CY but set
WEI to 1 or 0 depending on whether point is inside circle . This avoids
an IF and creates a 0,1 membership fonction

DO I=l, 145716

WEI(I) = DMINl(DMAXl((YY(I)-(X(I)-CX)**2),0.0),l . 0)
END DO

C* form cancer count as DOT product of WEI and C
OBSC = SDOT(N,WEI,l,C,l)

C* SKIP if count is too small

IF(OBSC.LT.CANMIN)GOTO 200

C* fo r m population count in the sarne way
OBSP=SDOT(N,WEI,l,P,l)

Unfortunately, while there is an improvement compared with the original code
of 2 .5 rimes, it is poorer than the previous best version. The extra arithmetic
improved the vector performance, but it took longer to run. There is an inter
esting lesson here of more general application. Vector performance increased,
but so too did the CPU rime! This is not uncommon but is not the desired
result, although it may well look good to outside viewers. Herein is another
more general vector computing problem. There is a degree of a 'How fast does
your code run in Mflops' syndrome! It is important to stop thinking only in
terms of Mflops and to consider the amount of science being done, and this is
seldom direct:ly related to Mflops; indeed, it can often be inversely related!
It is all too easy to become what may be termed 'vector-blinded' or 'Mflop
obsessed' and to concentrate al! one's tuning effort on getting ma,\'..Îmum-sized
vector DO loops to provide ma,\'..Îmum Mflops almost witl10ut tllinking
whetl1er tl1ere are better ways of doing it by ot:l1er means wllich may actually
reduce bot:l1 Mflops and CPU rimes. Maybe CPU rimes are a better measure of
tl1e amount of science being done tlun Mflops.

Case study in vector processing using QAM/1 as an example 113

The next step is to u·y to reduce tl1e amount of aritl1metic being performed by
. tllinkin some more of tl1e algoritl1m. Have anot:l1er lool~ at Loops 2 to 4. You
re.11 ot ~sooner or later) tl1at tl1ere is a bit of computatronal redtmdancy ~at
w1 sp il . f;~" d to spot for us but maybe it was too well llidden. In partrcu
tl1e camp er =e ' · b · d ince that
lar half of the aritl1metic effort in calculating distance rs e111g wast~ s . .

'·t wllich depends on CY is constant for tl1e entire CX loop. Prov1ded tl1ere 1s
par . . t 1 ld anotl1er cop)' of Y tl1en you can reduce t:l1e amount of suffioent memory o 10 .

'tl u·c by about one-tllird to produce Vers10n 5: an 1me

Loop 2:

DO CY = 1,1200,RADIUS*0.2

DO I = 1,145716
YY(I) = (Y(I) - CY) **2

END DO

Loop 3:

DO ex

Loop 4:

OBSP

OBSC

1,650,RADIUS*0 . 2

0.0

0.0

DO I 1,145716
DIS= (X(I) - CX)* *2 + YY(I)

IF(DIS.LE.RADSQ)THEN

OBSP = OBSP + P(I)

OBSC = OBSC + C(I)

ENDIF

END DO

. · u · b f; ctor of 4 7 to pro-Tllis is also helpful as it reduces t:l1e ong111al CP trme Y a . a · b .
duce an estimated total run rime of only 1.9 days. A useful improvemen.t, utS1t

' . r· · f tI1e GAM convement. o is still not enough to malce rout111e app icatrons o

what: else can be done? f
The answer is to redesign tl1e algorit:l1111 to furtl1er ~·educe t:l1e ~mount o2
'tl . b 'ng per·formed So let us re-examine what 1s go111g on 111 Loop

an 1metrc e1 · · 1 I V< . · 4 ··t11-
and see if some furtl1er aritl1111etic reduction may be poss1b e. n e1s1~11 , anb

. d d . L op 4 b)' storing tl1e invariant results from tlus loop ut
metrc was re uce 111 ° · · · ffi · ·
tl1e dimensions of Loop 4 remained unchanged. Cle~rly tl11S .1s me oent, su~~e

. . L 2 tl1at alread)' lie outside tl1e crrcle radius ca11110t poss1 y t:l1ose pomts 111 oop ' ' ' . . .
be worth considering in Loop 4 . The result is Version 6 .

114 Programm i ng vector supercomputers

Loop 2:

DO CY = 1,1200,RADIUS*0.2
DO I = 1, 145716

Loop 3:

YY(I) = (Y(I) - CY) **2
END DO

DO ex 1,650,RADIUS*0.2

Loop 4:

DO I = 1, 145716

IF(YY(I) .LE.RADSQ)THEN

END IF

END DO

DIS= (X(I)-CX) * *2 + YY(I)
IF(DIS.LE.RADSQ)THEN

OBSP = OBSP + P(I)

OBSC = OBSC + C(I)
END IF

This .reduces the amount of computation in Loop 4 and offers a s eed·
7.2 tunes and an estimated run rime of only 1 2 d b tl . , ~ . mg-up of
still inefficient because it soon be . ays, ut llS co e is probably
not needed at 'all If 11 tl cornes apparent tlut much of Loop 4 is really
. d ft ' . o1 y lere was some way of removing most of it Well tl .
is, an a er a few changes Vers· 7 le1e
to tl1ose oints which wn is p10duced. Tlus merely restricts attention
tllis b t f;~" d d stand some chance ofbeing inside tl1e circle. Version 6 did

u <we to re uce tl1e DO l · fi .
sion is as follows: oop s1ze or tl1e urnermost loop. Tllis new ver-

Loop 2:

DO CY = 1,1200,RADIUS*0.2
L = 0

END DO

DO I = 1, 145716

DIS = (Y(I) - CY) **2
IF(DIS.LE . RADSQ) THEN
L = L + 1
YY(L) = DIS

PP(L) P(I)
CC (L) = C (I)
END IF

Case st1ldy in vector processing using QAM/1 as an example 115

Loop 3:

DO ex l,650,RADIUS*0 . 2

Loop 4:

DO I = l, L
IF((X{I)-CX)* *2 + YY(I) .LE.RADSQ)THEN

OBSP OBSP + PP(I)

END IF

END DO

OBSC = OBSC + CC (I)

Tllis change requires at worst 3 X 145,716 additional words of memory, but it
dramatically reduces the size of tl1e computation in Loop 4 because typically L
will be a small fraction of 145, 716. Tllis is because tl1e search region is very large
in relation to tl1e circle sizes of interest to tl1e GAM, wllich will always tend to
be relatively small in relation to tl1e size of tl1e study region . There is an addi
tional very 1lice feature here in that when tl1e circle radii are small tl1ere are many
circles, but each retrieval is focused on a very small part of tl1e data . When tl1e
circle radii are very large, tl1ere are few of tl1em and it no longer matters tl1at a
large part of tl1e data may now be involved in tl1e spatial data-reu·ieval process.
The result is a massive 122 rimes reduction in ePU rimes compared witl1 tl1e
original code and a projected total run rime of mlly 1.8 hours!

However, greed or entlrnsiasrn to do better has now set in and tllis results in
Version 8, wllich seeks to resu·ict furtl1er tl1e range of Loop 4 from 1 to L to
sometlling much smaller, if we can define tl1e nli1limum limits tl1at need to be

examined. Tllis can be done as follows:

Loop 2: as before
Loop 3: as before
Loop 4: now resu·icts tl1e range of tlK DO loop to between Kl and K2, wllich

are maximum limits on tl1e search. Tllis involves putting all tl1e data
into an ascending X value sort order, calculating mülimum and ma..xi
mum X values (viz . ex - RADIUS, ex+ RADIUS) and tl1en doing
a binary search on X to find start and end locations Kl and K2 in tl1e
data subset. Tllis furtl1er reduces tl1e amount of computation by 2.5
rimes on tl1e test data. Version 8 becomes:

DO I Kl,K2
IF((X(I) -CX) * *2 + YY(I) .LE.RADSQ)THEN

OBSP OBSP + PP(I)

OBSC = OBSC + CC(I)

END IF

END DO

The estimated run rime for tl1e full problem is now 01lly 1.3 hours.

116 Programming vector supercomputers

Table 5.3 Summary of effects of nming changes to GAM/l code.

Algorithm Worl1station CPU tiine Cray]90 CPU time Cray Mflops/s
(hom-s) (hours)

version 1 275 195.0 93.9
version 2 156 49.3 22.0
version 3 140 49.3 39.0
version 4 206 77.2 38.9
version 5 107 41.3 24.0
version 6 50 27.1 18.0
version 7 3 1.6 9.5
version 8 1 1.2 8.6

Note: workstation is a Sun Ultra Sparc 170. Times exclude data input.

Table 5.3 summarises the tuning experience for both the Cray J90 and a Sun
Ultrasparc 170 workstation. Note how Mflops rates fall as CPU rimes decrease
which here reflects algorithmic improvements that dramaticaily reduced th~
a.inom:t of vector arithmetic being performed. Yet the programs are ail highly
vectonsed, a.i1d none of the principal loops fail to vectorise. Note also how the
workstation speeds a.i·e now compa.i·able with that of a single J90 processor. Ali
that vectorising effort needed to speed up the J90 is not present on the work
station, yet the CPU rimes a.i·e almost the sa.i11e, and the workstation hardware is
a small fraction of the cost of a J90.

Table 5 .4 provides counts of the number of flops (floating-point operations)
performed in the critical loops. How do you do that, you may wonder? Weil,
Y_OU add extra cod.e to the program to count them! It is a crude but very effec
ttve form of code mstt·umentation. The effects of the algorithmic improvements
a.i·e reflected in a massive reduction of the amount of a.i·ithmetic computation
goli~g on, a.i1d this is why the run rimes speed up to the extent they do.

Fmaily, you need to ensure that the results do not change as the rime is
reduced! With GAM they no longer do so, but it is quite common to find that
code and algorithm improvements wreck your algorithm and produce different

Table 5.4 Counts offloating-point operations (flops).

Algorithm Coimt of flops Worl1station
(millions) CPUtime

version 1 10498 275
version 2 5106 156
version 3 2957 140
version 4 4572 206
version 5 2957 107
version 6 114 50
version 7 114 3
version 8 46 1

Case study in vector processing using QAM/1 as an example 117

results. Sometimes the error may have been in the original code, so do not auto
maticaily nue this possibility out. More likely, it will have been inu-oduced. by
your code modifications . Less frequently, botl1 pro~rams may produce identtc~
wrong results, but tl1at is a different a.i1d fa.i· more difficult matter to detect. It is
always usefttl to have some benchma.i·k sta.i1dard results to compa.i·e ail subse
quent modifications witl1. This req1ùres a problem size smail enough to run on
a workstation. It always usefül to remove a.i1y common mode errors due to the
use of the same softwa.i·e, so different ha.i·dware is safest when creating sta.i1da.i·d

res1tlts. This is what was done here.
A final problem is to avoid being misled by tl1e test problem used in tl1e

tm1ing nms a.i1d thus producing production rime estimates. tl1at are incorr~ct.
This ca.i1 be easily demonstt·ated. A füll run of tl1e GAM mvolves generattng
23 690 246 circles a.i1d tl1en evaluating them. Accordli1g to the test problem,
tl1~ fin~ run time shmtld be around 4680 seconds (1 . 3 hours), but Îl1 fact it was
considerably less tl1an tl1is at 714 seconds (0 .19 hours) due to (1) tl1e speedm.g
up is greatest for tl1e smailest cli·cles, whereas tl1e benchmark .runs used. qmte
la.i·ge circles; and (2) tl1e resolution of the dock induced roundli1g error~ 111 tl1e
time estimates. Tlus is a iuce surprise! The very poor Mflop rate of 8.6 is reaily
irreleva.i1t because of tl1e much improved performa.ilCe of tl1e revised code. If
each GAM run can be regarded as delivering one scientific result, tl1en the final
code delivers about 300 rimes more science despite a.i1 average Mflop rate of8.6.
Finaily, it should be noted tl1at not ail efforts at improving p~rform~1~e ':ill suc
ceed and tlut ma.i1y are very time-consmnÎ11g or may have httle posittve impact.
However, it can be dramatic, altl1ough not ail codes a.i·e wortl1 Îlnprovmg a.i1d
not ail code changes will be as dra.inatic as those reported here. . .

Fli1aily, you could ask why not use a more soplusticated spattal data pomt
data-reu-ieval algoritl1111. For insta.ilCe, would a quadtt·ee or KB u-ee not speed
tl1ings up fürtl1er. The a.i1swer is ah11ost certainly 'no' for two re.asons: (1) th.e
optimised reu-ieval talces into account tl1e GAM spatial se~rch bemg used, so it
uses tl1e fact tl1at each circle is not inde pendent of tl1e prev10us on es nea.i·by; and
(2) neither quadtt·ees nor KB tt·ees vectorise, whereas tl1e GAM still does.

5.5.4 Loop O!

Oh yes, we da.i·ed not mention tlus ea.i·lier, as it was ratl1er _tl1eoretical when a
single run of tl1e GAM looked lilce talcing iune days! Smce lt now talc~s 01ùy a
few hm1dred seconds to run tl1e GAM once, on tl1e la.i·gest problem s1zes that
are probably applicable, you can now start to tackle some o~ tl1e science prob
lems that impact on tl1e quality of tl1e res1tlts. In short, tl1ere is a.i1 outer Loop 0,
wluch you could now run! One way of ha.i1dling tl1e multiple testing problems
implicit in tl1e GAM is by Monte Carlo simulation. Quite simply, you could
generate 501 random cancer distt·ibutions a.i1d run a separate GAM on e~ch.of
tl1em. This yields 501 sets of results, wluch ca.i1 be used in a Monte Ca.i·l~ s1gmfi
cance test procedure to determine how difficult it is to obta.in res1tlts smillai· to
tl10se observed witl1 tl1e real data Îl1 501(or1000 or 10,000) ra.i1dom data sets.

118 Progrnmming vector supercomputers

You could not even dare to think about doing this when each run takes nine
days, since 500 runs would require 12 .2 years of Cray J90 CPU rime. Now ail
this is within reach, and GAM becomes once more a real supercomputing
problem. It is probably not possible (or worth while) to further improve the
performance of the GAM. The single-processor CPU rimes will probably not be
much bettered. However, it is still possible to gain factors of 10 to 512 reduc
tion in wall dock rime by using other parallel-processing techniques. The total
CPU rime being expended is more or Jess constant; the trick is to reduce dra
matically how long in terms of wall dock or elapsed rime you have to wait to get
it. On a single processor with a single user the CPU rime is the wall dock or
elapsed rime . On a multi-processor, the elapsed rime will be some fraction of the
total CPU rime; crudely put, <livide it by the number of processors. More about
this in subsequent chapters, when the GAM is converted into a parallel format.
However, in developing parallel GAMs the lessons learned here should be
retained if at ail possible .

5.5.5 Summary of the basic code optimisation steps

The following methods were employed here in optimising the GAM. They are:

1 ensure all loops vectorise;
2 ensure that the innermost loops have the largest counts and if necessary also

unroll very short loops so that they become part of a larger loop;
3 try removing IF statements;
4 try removing expensive-to-compute fonctions (e.g . SQRT);
5 try using performance libraries to replace DO Loops;
6 t:ry reducing the amount of a.rithmetic being performed by reorganising the

algorithm;
7 localise scattered memory accessing by copying the data into consecutive

locations if it is used repeatedly;
8 be prepared to use extra memory to reduce arithmetic work;
9 above ail try to minimise the amount of arithmetic by redesigning the oper

ations of the algorithm based on knowledge about the application but in a
generic way so that it works on any data set; and

10 remember that memory accessing is much slower than arithmetic, so try to
optimise caching by keeping memory access sequential; indeed, treat it Wce
a slow disk file .

Not ail these attempts were successful. It is not always obvions how to do (9) at
the outset; often it emerges as desperation to improve the results sets in . So the
best strategy is to start with the obvions and work progressively towards a better
solution, interspersed with frequent timing runs. The aim is to gain large integer
factors of improvement, not small percentages. Hm.vever, once performance is
good enough then stop. Also be careful to ensure that the improvements are
generally applicable and not unique to either a specific test problem or to one

Case study 2: origin-constrnined spatial interaction model 119

application (ifthe code has more general applicability) or to particular hardware

or to a particular operating system.

5.6 Case study 2: origin-constrained spatial interaction
model

An exercise for you to do . Talce the code for a very basic origin-const.rained
spatial interaction mode! and vectorise it. This mode! can be expressed as

where
N

A,= l/L Di exp(- ~Cii)
1

The notation can be explained as follows:

P;i is the predicted flow from an origin zone i to destination i
O; is the size of origin zone i .
A; is a balancing factor designed to ensure that the total of the flows leavmg

origin zone i match O; . . .
Di is the distance or cost of travelling from origin i to destmat.ton J

~ is a parameter to be estimated
N is the number of origins and destination zones.

This mode! in its modern forrn was derived by Wilson (1970, 1974). It is still
widely used in one form or another in a large number ~f retail d~cision support
systems; see Birkin et al. (1996) for examples. A simple mt.t·~duct.ton to the con
cepts and practice of spatial interaction modelling is contamed 111 Ope1_1sh_aw et
al. (1999). Here attention is focused on a very eleme1:tary ~orm of spatial mter-.
action mode! on the grounds that if you can cope w1th thrs mode! then other
more complex ones will not cause you many additional problems. . .

You do not have to be a parallel-programming genrns to realrse that th1s
mode! consists mainly of vector operations; for example, you could re-express

this mode! as involving:

F;i = exp (- ~C;i) for ail i and j (5.1)

A, = l/L Di F;i) for ail i
1

(5.2)

Tii = O;A,Di Fii for ail i and j (5.3)

So it should run well on a vector processor.

120 Programming vector supercomputers

In the program given in Appendix 5.3, the data are created using a random
number generator. This avoids the need to read any data with ail the associated
copyright, etc. issues, which are best avoided because they are not relevant here.
Additionally, the computational performance of this model is not dependent on
the data! Loop 1 deals with this task. Function RANF() is a Cray random num
ber generator, but there is nothing special about it.

Loop 2 computes the origin and destination totals Ü; and Di

D =:ET
J i lJ

where T;i is the observed (albeit random) flows created by the random number
generator.

Loops 3 to 5 do most of the model calculation. Loop 3 is an outer loop,
within which Loop 4 computes the balancing factor A;

while Loop 5 produces the model's predicted flows P;i

Clea.rly, ail the DO loops vectorise and the code is also well designed in that
Loop 3 is based on the best variable . If J had been used here instead, the pro
gram would be quite different and considerable additional computation would
be required. You could t:ry it out, if you wished. In general, then, the model is
fül!y vectorised in its native form. Note that the PARAMETER statement sets a
value for N, and this can be changed.

So how do you optimise tlus program's performance? There are no IF state
ments that can be removed; nor can the EXP fonction be dispensed with, even
if it is expensive to compute . However, the latter can be optimised. As it stands,
the program computes the code fragment

D(J) *EXP (-BETA*C(I,J))

2N
2

rimes. So why not store it, thereby saving N 2 additions, N 2 subtractions,
2N

2
multiplications and more importantly N 2 EXP calls.

Declare a new array (F(N,N)) and use it to store tl1e values

F(I,J) = D(J)*EXP (-BETA*C(I,J))

Case study 2: origin-constrained spatial interaction model 121

and ilien refer to F(I,J) instead of recalculating it. This produces qtute an
. rovement! See Appendix 5 .4 for t!1e code. . .
1m~not!1er stage in optimisation would be to consider convertmg, by unrollin~
t!1e t:wo-dimensional arrays into a longer one-dimensional one so tl1at th.e N by

di · al ·t11 N 2 elements. Unrolling tl1e mode! is not too arrays become one- mens1011, w1 tl f, Il .
diffi.cult, but it needs to be done consistently. The unrolling invol:es . 1e o ow1)1~g

c d 1 l ·e N = 3 (i e three origins and three destmation zones . process 1or a mo e w 1er · ·

T1 = T11
T1 = T11
T3 = T31
T4 = T12
Ts = T 12
T6 = T32
T7 = T13
T8 = Tz3
T9 = T33
C looks similar. IJ

Li! . c 0 b t tl11's i's a little more tl'icky because it is one-dimensional. cew1se ior ;, u '

Ü1=01

Ü2 = Ü 2

Ü 3 = Ü 3

Ü4 = Ü1

0 5 = Ü2

06 = Ü 3

Ü 7 = Ü1

0 8 = Ü 2

Ü9 = Ü3

and Wcewise for Di

D1 =D1
D2 = D1
D3 = D1
D4 = Dz
D 5 = Dz
D 6 = D1
D7 = D3
Ds = D3
D9 = D3

Note tl1at whether you unroll the rows before tl1e colum1:s (or vie~ versa) is arbi.
n·ary and does not marrer much provided that it is done 111 a consistent manner.

122 Progrnmming vector supercomputers

The mode! looks similar to the original, except that the j subscript has been
removed :

Note that i now runs from 1 to N
2

. A slight complication is the need to compute
the A; term and then unroll it in the same manner as O;.

Ail this unrolling dramatically increases vector lengths and simplifies address
calculation. However, the effects are not that dramatic on the Cray J90, prob
ably because of the vector length limit of 64. This may not be the case on clif
ferent hardware. Appendix 5.5 contains the Fortran 77 code for th.is mode!.

5. 7 Conclusions

Vector parallel programming is essentially easy, simple-minded and unlikely to
yield erroneous results. However, it is often hard to get more than 50 per cent
of theoretical performance of the vector machine, and even then th.is may only
reflect a h.igh.ly inefficient code. Adclitionally, not ail algorithms can easily be re
expressed as vectorisable code without either doing great damage to them or
requiring more rather than Jess computation. Other codes and algorithms may
be too complex for vectorisation; for example, if they involve recursion. Yet
others may be highly parallel but involve only short DO loops or multiple
dependencies or many library calls or employ random memory accessing. Also,
sometirnes, parallelism at the DO loop level is too finely gra.ined to fully exploit
the parallelism present in the algorithm. Maybe these codes will benefit most
from other forms of parallel processing.

There is also a danger in becoming Mflops-obsessed without realising that the
relationship between Mflops, computing rimes and quantity of science need not
be linear. The argument is made that vector processors still have a role to play,
but by themselves they are no longer the future of HPC as supercomputing will
become increasingly dominated by MIMD hardware (see subsequent chapters).
Nevertheless, many of the code changes needed to improve the performance of
a vector processor are un.likely to have been wasted, and the algorithmic
redesign principles cliscussed and demonst.rated in this chapter are also more
gene.rally applicable in parallel programm.ing, as we later demonsu·ate.

Appendix 5.1: listing of GAM /1 Version 1

C* -stan/garn/garn_l.f based on -stan /mapex/prograrnl . f

PARAMETER (NCASE5150 000)

I MPLICIT NONE

DOUBLE PRECISION OVERAT,XMINE,XMAXN,XMINN,XMAXE,

X OBSP,OBSC,RADIUS,DIS,CX,CY,PROB,

X X(NCASE) ,Y(NCASE) ,P(NCASE) , C (NCASE),

X RADINC,RADMAX,RADMIN,POPMIN ,CANMIN,THRESH

CHARACTER*lOO XYDATF,PCDATF,OUTFIL

INTEGER I,LOOP,ICOL, I ROW

Listing of QAM/l Version l 123

X

X

INTEGER TOTCAL,TOTDAT,TOTNCS,TOTNHY,STEP,ID,N,NCASE,

MINN,MAXN,MINE,MAXE,NTIMES,NCALC,NDAT,NCALS,NHY,

TOTCAL,TOTDAT,TOTNCS, TOTNHY,N2

C*
WRITE(6,7800 1)

Analysis Machine GAM / 1 (Feb 1997) ' //) 78001 FORMAT (• *Geographical = = ==== ===
C* Step 1. read data = = = = == = = === = ===== = = = = = ====== =

C* se t constants

C* read ini.file
OPEN(UNIT =l ,FILE= 'garnfiles.dat' ,FORM='FORMATTED',

X STATUS= 'OLD')

C* read USER DATA file names

C .. this file contains X,Y data

READ(l, 10001) XYDATF

t h is file contains Pop at Risk and Count of Real Cases c ..
READ(l,10001) PCDATF

10001 FORMAT(A)

C* get output results fil e name

READ(l, 10001) OUTFIL

CLOSE (UNIT=l, STATUS= 'KEEP')

C* read X- Y data
WRITE(6,6707) XYDATF

6707 FORMAT('*User Input X,Y File is; ',A)

OPEN (UNIT=l, FILE=XYDATF,

999

123

X STATUS='OLD',

X FORM='FORMATTED')

DO I=l, NCASE

X(I)=0.0

Y(I) = O.O

END DO

N= O

DO I=l, NCASE
READ(l,*,END= 999) ID,X(ID) ,Y(ID)

N= I

END DO

WRITE(6,123) N
FORMAT(5X, '*EOF at Case Number' ,IlO)

CLOSE(UNIT= l,STATUS=' KEEP')

C* No data read?
IF(N. EQ.0) STOP 1

C* read population and observed

WRITE(6,6708) PCDATF

cancer data

6708 FORMAT('*User Input Data F i le is; ',A)

OPEN (UNIT=l, FILE=PCDATF,

X STATUS= 'OLD' ,

X FORM= 'FORMATTED')

DO I=l,NCASE

P(I)=0.0

C(I)=0.0

END DO

124 Programming vector supercomputers

N2 =0

DO I = l, NCASE

READ (l,*,END=199) ID,C(ID) ,P(ID)
N2=I

END DO

199 WRITE(6,123) N2

CLOSE (UNIT=l, STATUS= 'KEEP')

C* No data read?

IF(N2.EQ.0) STOP 2

C* files do no t match

IF(N.NE.N2) STOP 3

C* go through data and produce counts

OBSP=O. 0

8

X

X

X

OBSC=O. 0

DO I=l,N

OBSC=OBSC+ABS(C(I))

OBSP=OBSP+P (I)

END DO

WRITE(6,8) N,OBSP,OBSC

FORMAT(

*Number of input data r ecords : ',18 /

*Total population at risk: ',Fl0 . 0/

*Total Cases ',Fl0 . 0)
IF(OBSP. EQ.0.0.0R.OBSC.EQ.0.0)STOP 3

OVERAT=OBSC/OBSP

C* find Min and Max X,Y values to define search region

XMINE = 999999999.0

XMINN=999999999.0

XMAXE=O. 0

XMAXN=O. 0

C* data are in 1 km units

DO I=l,N

XMINE=DMINl (XMINE, X (I))

XMINN= DMINl(XMINN,Y(I))

XMAXE=DMAXl (XMAXE, X (I))

XMAXN=DMAXl (XMAXN, Y (I))

END DO

WRITE(6,7123) OVERAT,XMINE,XMAXE,XMINN,XMAXN

7123 FORMAT (

X *Global Incidence Rate per Population at Risk is ',Fl2.8/

X' *Minimum Easting is' ,Fl2.l,' Maximum is' ,F12.1/

X' *Minimum Northing is' ,F12.1,' Maximum is' ,Fl2 .1)
MINN=XMINN-1. 0

MINE=XMINE-1. 0

MAXN=XMAXN+l . 0

MAXE= XMAXE+ 1. 0

C* Step 2. set search pararneters== ======= == ===== ==== ======== =
C* circle radii are in KM

RADMIN=lO. 0

RADMAX = lO . 0

RADINC = l . 0

C* select probability threshold

THRESH=0.005

C* set minimum circle size

Listing of QAM/1 Version 1

POPMIN=lOO. 0

C* set minimum cancer count size

CANMIN=2 . 0

C* write search parameters out
WRITE(6,76541) RADMIN,RADMAX,RADINC,POPMIN

76541 FORMAT('*Minimum Ci rc l e radius is' ,Fl0.3,' 1 km'/

x '*Maximum Circle radius is' , Fl0.3,' 1 Jan' /

X

X

'*Circle increment set to' ,Fl0 .3 , ' 1

'*Minimum POPULATION size is',Fl0 . 0)

WRITE(6,78234) THRESH

km' /

78234 FORMAT(' *Significance THRESHOLD set at' ,F12.6)

C* other global inits

TOTCAL=O

TOTDAT =O

TOTNCS=O

TOTNHY=O
C* convert all population counts into expected values

DO I =l,N

P(I)=P(I)*OVERAT

END DO

C* reset minimum value
POPMIN=POPMIN*OVERAT

C* set initial radius for circles

RADIUS=RADMIN- RADINC
C* compute number of circle sizes to be exained

NTIMES = (RADMAX-RADMIN)/RADINC+l.0

C* open output file
OPEN (UNIT=9, FILE=OUTFIL, STATUS= 'UNKNOWN',

X FORM= 'FORMATTED')
C* Step 3. circle size loop====== = ===== = = = = = = = = = = = = = = = = =

C* *********circle size loop starts here ********** ************ *

DO LOOP=l , NTIMES

C* set circ le radius

cc

RADIUS=RADIUS+RADINC

STEP=RADIUS*O. 2+0. 5001

STEP=RADIUS

IF(STEP.EQ.0) STEP= l

NCALC=O

NDAT = O

NCALS=O

NHY=O
C* Step 4 . grid search: northing loop====== === = = = = = = = = = = = = ==

DO 100 IROW = MINN, MAXN, STEP

CY=IROW
C* Step 5. grid search: easting loop======== = == = = = = = = = = = =====

DO 200 I COL = MINE, MAXE, STEP

cx=ICOL
C* GET DATA WITHIN CIRCLE AT (IROW, ICOL)

NCALC=NCALC+l
C* Step 6. get data for circle= = = = = ===== = = = == = = = = = = = = = = =

OBSP=O . 0

OBSC=0.0

DO I=l,N
C* cale distance of ED at X(I), Y(I) from grid point CX,CY

125

126 Programming vector supercomputers

DIS=(X(I) - CX)**2 + (Y(I) - CY)**2

I F(DIS .GT.0.0) DIS=DSQRT(DIS)
C* is point inside circle?

IF(DIS.LE .RADIUS)THEN

C* yes so accumulate counts

OBSP=OBSP+P(I)

OBSC=OBSC+C (I)

ENDIF

END DO

C* Step 7. compute Poisson probabil i ty= = ====== === = = = ==== = == =
C* SKIP if populat ion count is too small

IF(OBSP . LT.POPMIN)GOTO 200

C* SKIP if too small to be of interest

IF(OBSC. LT.CANMIN) GOTO 200
NDAT = NDAT+l

C* CALCULATE SIGNIFICANCE LEVEL

CALL POIS(OBSP,OBSC,PROB)
NHY=NHY+l

IF(PROB.GT.THRESH)GOTO 200

C* YES its s i gnificant so save

NCALS = NCALS +l

C* Step 8. save circle info= = == == == === == == == ==== = ====== ==

WRITE(9,90001) CX,CY,RADIUS,OBSP,OBSC,PROB
90001 FORMAT(3F9.3,2F9.3,Fl0.7)
C* END OF EASTING

200 CONTINUE

C* END OF NORTHING

100 CONTINUE
c
C ************ end of search loop for given circ le radius *************
c

WRITE(6,7822 1) RADIUS,STEP,NCALC,NDAT,NHY,NCALS

78221 FORMAT(40(1H-) /' *RADIUS= ',F12.2, 'KM with STEP of',I6 ' KM '/

XlH ,SX, '*Number of sites generated ', IlO /

XlH ,SX, '*Number of sites examined ',IlO/

XlH ,SX, '*Number of hypotheses tes ted ',IlO/

XlH ,SX, '*Number of significant circles' ,IlO)
C* form global stats

TOTCAL = TOTCAL + NCALC

TOTDAT=TOTDAT+NDAT

TOTNHY=TOTNHY+NHY

TOTNCS = TOTNCS+NCALS

C* go back and do another circle s ize
END DO

C***

C* END OF ALL RUNS**

C**

WRITE(6,887) TOTCAL,TOTDAT,TOTNHY,TOTNCS
887 FORMAT ('O********** End of GAM Run

X lH , '*Total sites generated i s' ,IlO/

X lH , '*Total sites examined ',IlO/

X lH , '*Total hypotheses tested ',IlO/

X lH , '*Total significant circ l es ',IlO)
STOP

***** ** *******************'/

Listing of QAM/1 Version 1

END
C* CALCULATE POISSON PROBABILITY OF JA CANCERS

SUBROUTINE POIS(OBSP,OBSC,PROB)

IMPLICIT NONE
DOUBLE PRECISION CUMPRB(3000) ,CONS(3000)'

X AMEAN,OBSP,OBSC,PROB

INTEGER I, JA, J

JA=OBSC

AMEAN=OBSP

C* initialise

DO I =2,JA

CONS(I)=lDO/(I-lDO)

END DO
C* calculate Poisson probability of JA cancers being observed

IF(JA.GT.1) THEN

CUMPRB(l) = EXP(-AMEAN)

PROB = CUMPRB (1)

DO J=2,JA
CUMPRB(J) = AMEAN*CONS(J)*CUMPRB(J- 1)

PROB = PROB + CUMPRB(J)

END DO
PROB= 1 . 0 - PROB

ELSE

C* 1 OR less cancers

PROB = 1 . 0 - EXP (-AMEAN)

END IF

RETURN

END

Appendix 5.2: listing of GAM/1 Version 8
C* -s tan / gam/ gam_8. f DSQRT,N (**,-) and 1 IF removed , da t a filter

PARAMETER (NCASE=lSO 000)

C*

X

X

X

X

X

X

X

IMPLICIT NONE
REAL OVERAT,XMINE,XMAXN,XMINN,XMAXE,

OBSP,OBSC,RADIUS,DIS,CX,CY,PROB,RADSQ,

X(NCASE) ,Y(NCASE,P(NCASE) ,C(NCASE),

RADINC,RADMAX,RADMIN,POPMIN,CANMIN,THRESH,

YY(NCASE) ,XX(NCASE) ,PP(NCASE) ,CC(NCASE),

LEFT,RIGHT
CHARACTER*lOO XYDATF,PCDATF,OUTFIL

INTEGER I,LOOP,ICOL ,IROW,L,Kl,K2, I NDEX (NCASE)
INTEGER TOTCAL,TOTDAT,TOTNCS,TOTNHY,STEP,ID,N NCASE,

MINN,MAXN,MINE,MAXE,NTIMES,NCALC,NDAT,NCALS,NHY,

TOTCAL, TOTDAT,TOTNCS,TOTNHY,N2

WRITE (6,78001)
78001 FORMAT ('* Geographical Analysis Machine GAM / 1 (Feb 1997)

C* Step 1. read data

C* set constants

C* read ini. fil e

'/ !)

127

128 Programming vector supercomputers

OPEN (UNIT=l, FILE=' gamfiles.dat' ,FORM='FORMATTED'.

X STATUS=' OLD')

C* read USER DATA file names

C . . this file contains X,Y data

READ (l,1000 1) XYDATF

C .. this file contains Pop at Risk and Coun t of Real Cases

READ (l,10001) PCDATF

10001 FORMAT (A)

C* get output results file name

READ (l,10001) OUTFIL

CLOSE (UNIT=l,STATUS='KEEP')

C* read X-Y data

WRITE (6,6707) XYDATF

670 7 FORMAT ('*User Input X, Y File is; ',A)

OPEN (UNIT=l, FILE=XYDATF,

999

X STATUS=' OLD' ,

X FORM='FORMATTED')

N=O

DO I =l, NCASE

READ (1, *, END=9 99) ID,XX(I),YY(I)

X (I) =XX (I)

N=I

END DO

WRITE (6,123) N

12 3 FORMAT (5X, '*EOF at Case Number ' ,IlO)

CLOSE (UNIT=l,STATUS= 'KEEP')

C* No data read?

IF (N.EQ . 0) STOP 1

C* sort X values

CALL SORT (X, INDEX,N)

C* re-order to reflect sort on X

DO I =l,N

ID=INDEX (I)

X (I)=XX(ID)

Y (I)=YY(ID)

END DO

C* check sort

DO I-2,N

IF (X(I) .LT.X(I-1)) STOP 55

END DO

C* read population and observed cancer data

WRITE (6,6708) PCDATF

6708 FORMAT ('*User Input Data Fi le i s;

OPEN (UNIT=l,FILE=PCDATF,

X STATUS='OLD',

X FORM= 'FORMATTED')

N2=0

DO I=l, NCASE

READ (1, *,END=l99) ID,XX(I) ,YY(I)

N2=1

END DO

',A)

Listing of QAM/1 Version 8 129

199 WRITE (6,1 23) N2

CLOSE (UNIT=l,STATUS='KEEP')

C* No data read?
IF (N2.EQ.O) STOP 2

C* re-order to reflect sort on X

DO I=l, n

ID=INDEX (I)

C (I) =XX (ID)

P (I)=YY(ID)

END DO

C* Files do not match
IF (N.NE.N2) STOP 3

C* go through data and produce counts

OBSP=0.0

X

X

X

OBSC=0. 0

DO I=l,N

OBSC=OBSC+ABS(C(I))

OBSP=OBSP=P(I)

END DO
WRITE (6,8) n,OBSP,OBSC

FORMAT(
'*Number of input data records:' ,18/

'* Total population at risk: ',Fl0.0 /

'*Total Cases' ,Fl0 . 0)

IF (OBSP . EQ .0.0.0R .OBSC.EQ .0.0)STOP 3

OVERAT=OBSC/OBSP

C* Find Min and Max X,Y values to define search region

XMINE=999999999.0

C* data

7123

X

X'

X'

XMINN=999999999.0

XMAXE=0.0

XMAXN=0.0

are in lkm units

DO I=l, N

XMINE=AMINl (XMINE,X (I))

XMINN=AMINl (XMINN, Y (I))

XMAXE=AMAXl (XMAXE,X(I))

XMAXN=AMAXl (XMAXN,Y(I))

END DO

WRITE (6,7123) OVERAT,XMINE,XMAXE ,XMINN, XMAXN

FORMAT(
*Global Incidence Rate per Population at Risk is

*Minimum Easting is' ,Fl2.l,' Maximum is' ,Fl2.l/

*Minimum Northing is' ,Fl2.l,' Maximum i s', F l 2 .1)

MINN=XMINN-1. 0

MINE=XMINE- 1. 0

MAXN=XMAXN+l.O

MAXE=XMAXE+l . 0

', Fl5.9/

- - - ==================== C* Step 2 . set search parameters==================---

130 Programming vector supercomputers

C* c irc le radii are in km

RADMIN=lO.O

RADMAX=lO.O

RADINC=l . 0

C* sel ect probability threshold

THRESH=0.005

C* set minimum circle size

POPMIN=l00.0

C* set minimum cancer count size

CANMIN=2 . 0

C* write search pararneters out

WRITE (6,76541) RADMI N,RADMAX,RADINC,POPMIN

76541 FORMAT ('*Minimum Circ le radius is' , FlO. 3, ' lkm' /

X

X

X

'*Maximum Circle radius is' ,Fl0.3,' lkrn' /

'*Circle increment set to' ,Fl0.3,' lkm' /

'*Minimum POPULATION size is',Fl0.0)

WRITE(6,78234) THRESH

78234 FORMAT(' *Significance THRESHOLD set at' ,F12 . 6)

C* other global inits

TOTCAL=O

TOTDAT=O

TOTNCS=O

TOTNHY=O

C* convert all population counts into expected values

DO I=l,N

P(I)=P(I)*OVERAT

END DO

C* reset minimum value

POPMIN=POPMIN*OVERAT

C* SET INITIAL RADIUS for circles

RADIUS=RADMIN-RADINC

C* compute number of circle sizes to be examined

NTIMES= (RADMAX-RADMIN)/RADINC+l.O

C* open output file

OPEN (UNIT=9,FILE=OUTFIL, STATUS='UNKOWN',

X FORM='FORMATTED')

C* Step 3. circle size loop===

C* STEP=RADIUS
IF(STEP.EQ.0) STEP=l

NCALC=O

NDAT=O

NCALS=O

NHY=O

Listing of QAM!l Version 8 131

C* Step 4. grid search: northing loop=======================================

DO 100 IROW=MINN,MAXN,STEP

CY=IROW

L=O
DO I=l,N
DIS=(Y(I)-cy)**2

IF(DIS.LE.RADSQ)THEN

L=L+l

YY(L)=DIS

XX(L)=X(I)

PP(L)=P(I)

CC(L)=C(I)

END IF

END DO
IF(L.EQ.O)GOTO 100

C* Step 5. grid search: easting loop==

DO 200 ICOL=MINE,MAXE,STEP

CX=ICOL
C* GET DATA WITHIN CIRCLE AT (IROW,ICOL)

NCALC=NCALC+l

C* establ ish search region

LEFT=CX-RADIUS

RIGHT=CX+RADIUS
CALL FIND(XX,L,LEFT,Kl,l)

CALL FIND(XX,L,RIGHT,K2,2)
C* Step 6. get data for circle===

OBSP=0.0

OBSC=0.0

DO I=Kl,K2
C* cale distance of ED at X(I),Y(I) from grid point CX,CY

DIS=(XX(I)-cx**2+YY(I)

C* is point inside circle?

IF(DIS.LE.RADSQ)THEN

C* yes so accumulate counts

OBSP=OBSP+PP(I)

OBSC=OBSC+CC(I)

END I F

END DO

C* *********circle size loop starts here***********************
DO LOOP=l,NTIMES C* Step 7. compute Poisson probabi lity======== ==============================

C* set circle radius

RADIUS=RADIUS+RADINC

RADSQ=RADIUS*RAD IUS

C* STEP=RADIUS*0.2+0.5001

C* SKIF if population count is too small

IF(OBSP.LT.POPMIN)GOTO 200

C* SKIF if too small to be of interest

132 Programming vector supercomputers

IF(OBSC.LT.CANMIN)GOTO 200

NDAT=NDAT+l

C* CALCULATE SIGNIFICANCE LEVEL

CALL POIS(OBSP,OBSC,PROB)

NHY=NHY+l

IF(PROB . GT . THRESH)GOTO 200

C* YES its significant so save

NCALS=NCALS+l

c* Step 8. save circle info===

WRITE (9,90001) CX,CY,RADIUS,OBSP,OBSC,PROB

90001 FORMAT(F9.3,2 F9.3,F10.7)

C* END OF EASTING

200 CONTINUE

C* END OF NORTHING

100 CONTINUE

c
C ************ end of search loop given circle radius ************

c
WRITE(6,78221)RADIUS,STEP,NCALC,NDAT,NHY,NCALS

78221 FORMAT(40(1H-)/' *RADIUS=',Fl2.2,'KM with STEP of ',I6'KM'/

XlH ,5X, '*Number of sites generated' ,IlO/

C*

C*

XlH ,5X, '*Number of sites examined',IlO/

XlH ,5X, '*Number of significant circles' ,IlO/

XlH ,5X, '*Number of significant circles' ,IlO/

fo rrn global stats

TOTCAL=TOTCAL+NCALC

TOTDAT=TOTDAT+NDAT

TOTNHY=TOTNHY+NHY

TOTNCS=TOTNCS+NCALS

go back and do another circ l e size
END DO

C****** * ***

C* END OF ALL RUNS***

C**

887

X

X

X

X

WRI TE (6,887) TOTCAL,TOTDAT,TOTNHY,TOTNCS

FORMAT('O********** End of GAM Run **************************'/

lH

lH

lH

1H

STOP

END

, '*Total

, '*Total

, '*Total

, '*Total

sites generated is',IlO/

sites examined ', IlO/

hypotheses tested '' I10/
significant circ les', IlO)

C* CALCULATE POISSON PROBABILITY OF JA CANCERS

SUBROUTINE POIS(OBSP,OBSC,PR)

IMPLICIT NONE

DOUBLE PRECIS ION CUMPRB(3000) ,CONS(3000),

X AMEAN,PROB

REAL OBSP,OBSC,PR

I NTEGER I,JA,J

JA=OBSC

AMEAN=OBSP

C* initial ise

DO I=l,JA

CONS (I) =lDO/ (I - lDO)

END DO

Listing of QAM/ 1 Version 8 133

C* calculate Poisson probabli ty of JA cancers being observed

I F(JA .GT . 1) THEN

CUMPRB(l) = EXP(-AMEAN)

PROB = CUMPRB (1)

DO J=2,JA
CUMPRB(J) = AMEAN*CONS(J)*CUMPRB(J-1)

PROB = PROB + CUMPRB

END DO
PROB = 1. O- PROB

ELSE

C* 1 OR less cancers
PROB = 1.0-EXP(- AMEAN)

ENDIF

PR=PROB

RETURN

END

C* BINARY SEARCH
SUBOUTINE FIND(X , N,VALUE , IPOS ,FLAG)

IMPLIC I T NONE

REAL X(N),VALUE,LAST

INTEGER N,IPOS,MAX,MI N,K,FLAG

C* check range
IF(VALUE .LT.X(l))THEN

IPOS=l

RETURN

ENDIF

I F(VALUE.GT.X(N))THEN

IPOS=N

RETURN

ENDIF

C* BINARY SEARCH

MAX=N
MIN=l

K= (MAX+MIN) /2

C* COMPARE

4000 CONTINUE
IF(VALUE.EQ.X(K))THEN

I POS=K

GOTO 100

ENDIF

C* UPDATE SEARCH
IF(X(K) .GT.VALUE)THEN

MAX=K-1

ELSE

MIN=K+l

ENDIF

IF(MAX.GE.MIN)THEN

134 Programming vector supercomputers

K=(MIN+MAX)/2

GOTO 4000

ENDIF

C* NOT FOUND

IPOS=MIN

C* f ind edge

100 CONTINUE

C* l eft edge=============== == =======

IF(FLAG.EQ.l) THEN

C* check with target

IF(IPOS,EQ .0) IPOS=l

25 IF(X(IPOS) .GE.VALUE)THEN

IF(IPOS.EQ.l)RETURN

IPOS=IPOS - 1

GOTO 25

ENDIF

C* X(I POS) LT target

LAST=X (I POS)

24 IF(IPOS . EQ .l)RETURN

IPOS=IPOS-1

IF (X(IPOS) .EQ.LAST)GOTO 24

IPOS=MINO(IPOS+ l,N)

RETURN

ENDIF

C* r i ght edge========================

C* check with target

IF(IPOS.EQ .0) IPOS=l

250

C*

240

C*

100

IF(X(IPOS) . LE .VALUE)THEN

IF (IPOS . EQ.N)RETURN

IPOS=IPOS+l

GOTO 250

ENDIF

X(IPOS) GT target

LAST=X(IPOS)

IF9 IPOS .EQ .N)RETURN

IPOS=IPOS +l

IF(X(IPOS) . EQ.LAST)GOTO 240

IPOS=MAXO(IPOS - 1,l)

RETURN

END

Sor t routine

SUBROUTI NE SORT(A,INDEX,N)

REAL A(N) ,B

INTEGER INDEX(N)

DO I=2,N

INDEX(I)= I

END DO

I F(N.EQ . l)RETURN

INC=N/2

CONTINUE

50

500

200

LIMIT=M-INC

DO 50 I=l,LIMIT

J=I+INC
IF(A(I) .LE.A(J))GOTO 50

B=A(I)

A(I)=A(J)

A(J)=B

II=INDEX(I)

INDEX(I)=INDEX(J)

INDEX (J) =II

CONTINUE

INC=(INC*3)/4

IF(INC.GT.l) GOTO 100

L=N-1

IF(L.LE.0) RETURN

K=O
DO 200 I=l,L

J=I+l
IF(A(I) . LE. A(J)) GOTO 2 00

B=A(I)

A(I)=A(J)

A(J)=B

II=INDEX (I)

INDEX(I)=INDEX(J)

INDEX(J)=II

K=I

CONTINUE

IF(K.LE.0) RETURN

L=K-1

GOTO 500

END

Listing of initial spatial interaction 135

Appendix 5.3: listing of initial spatial interaction model

Prograrn sirn
! * si_ l. f Spatial Interaction Model

IMPLICIT NONE
INTEGER, parameter: : N=lOOO

REAL, parameter : : BETA=0.25
REAL,T(N,N), C(N,N), O(N), D(N), P(N, N), SUMS (N), SS, SUMX, A (N)

INTEGER I, J

read *, T

read *, C

! * calculate Oi and Dj

o=O . 0

D=O. 0

o=sum (T,l)

D= sum (t, 2)

! * calculate rnodel

ss=o. o
! *Cale A(I)

SUMS=O. 0

do i=l, n

136 Programming vector supercomputers

A(i)O = l.0/sum (d*exp(-beta*c(i, :)))

!* cale rnode l

ss=ss+sum(((A(l)*O(I)*D*EXP(- BETA*C(I, :))) -T (i, :))**2)
enddo

END DO

SUM=N

Listing of final version of spatial interation model 137

SUMX= N 123

ss=SS/ (SUM*SUM)

WRITE(6,123)SS

FORMAT (F15. 9)

STOP SS=SS/(SUMX*SUMX)

PRI NT '(Fl5.9)' SS

STOP

END program sirn

Appendix 5.4: listing of spatial interaction model with
calculation reduced by storing some results

C* si_l.f Spatial I nteraction Madel

IMPLICIT NONE

INTEGER N

REAL BETA

PARAMETER (N = lOOO, BETA=0.25)

REAL T(N,N) ,C(N,N) ,O(N) ,D(N) , P(N,N) ,SUM,SS,
X RANf,A(N)

INTEGER I,J

C* generate sorne randorn data (Loop 1)

SS=RANf ()

DO I=l,N

DO J=l,N

T(I,J) = RANf()*lO.O

C (I, J) = RANf () *100. 0

END DO

END DO

C* calculate Oi and Dj (Loop 2)

DO I=l,N

O(I)=O.O

END DO

DO J=l,N

DO I=l,N

O(I) = O(I) + T (I, J)

D(J) =D(J) +T(I ,J)

END DO

END DO

C* calculate rnodel (Loop 3)

SS=O. 0

DO I=l,N

C* Cale A(I) (Loop 4)

SUM= O. 0

DO J=l,N

SUM = SUM+D (J) *EXP (- BETA*C (I, J))

END DO

A (I) =1. 0/SUM

C* cal e rnodel (Loop 5)

DO J=l, N

P(I,J) =A(I) *O(I) *D(J) *EXP(- BETA*C (I,J))

ss=ss+(P(I,J)-T(I,J))**2

END DO

END

Appendix 5.5: listing of final version of spatial interaction
model

C* si_3 . f Spatial I nteraction Madel **unr olled

IMPLICIT NONE

INTEGER N

REAL BETA
PARAMETER (N=2000, BETA=O. 25)

REAL T(N*N) ,C(N*N) ,SUM,SS ,

X RANf,OO(N) ,DD(N) ,F(N*N)

INTEGER I,J,Kl,K2 , L

C* generate some random data

ss=RANf ()

DO I =l,N

OO(I) = O.O

DD(I) =0 . 0

END DO

L=O

DO I=l ,N

DO J = l,N

L=L+l

T(L) =RANf() *1 0.0

C(L) = RANf()*l00 .0

OO(I) =OO(I) +T(L)

DD(J)=DD(J)+T(L)

END DO

END DO

C* unroll Dj

L=O

DO I = l ,N

DO J = l,N

L=L+ l

F(L)=DD(J)

END DO

END DO

C* calcul ate rnodel

ss=o. o

C* remove constant calculation

DO J=l,N*N

F (J)= F (J)*EXP(-BETA*C(J))

END DO

C* calcul ate Ai terms

Kl = l

K2 = N

DO I=l,N

C* Cale A(I)

138 Programming vector supercomputers

SUM= O. 0

12 3

DO J=Kl,K2

SUM= S UM+F (J)

END DO

SUM= oo (I) / SUM

DO J = Kl, K2

SS = S S+ (F(J) *SUM-T(J))* * 2

END DO

Kl=Kl + N

K2 = K2+N

END DO

S UM=N

S S= S S / (SUM* SUM)

WRITE(6 , 123)SS

FORMAT(FlS.9)

STOP

END

6 Shared-loop and data parallel . programm1ng

This chapter considers three different ways of parallel programming: multi
tasking, sharing out DO loops over many processors and data parallel
programming. The focus is on how to do it, identification of the problems and
practical advice on how best to handle the difficult bits . This approach to paral
lel programming is fairly easy. Most readers will be able to master the skills in a
day or two if they already know how to program and have access to appropriate
hardware and software. There is an argument that fairly soon most workstations
will be offering this type of parallel processing capability, which makes the task
of discovering how to doit more than worth while . However, let us be realistic.
This form of parallel programming is milikely in the near füture to be what
leading-edge HPC systems can handle. If you need maximum HPC power you
will need to read Chapters 7 and 8.

6.1 Introduction

A number of other approaches to parallel programming offer much greater
flexibility than vectorisation. The simplest involves spreading either complete
jobs or sets of DO loops over multiple processors so that they are run in par
allel (at the same rime as each other). This particular parallel-programming
paradigm and parallelisation strategy cornes in varions forms. lt may be called
job farming, multi-tasking, macro-tasking, auto-tasking or micro-tasking. It
may also be called data parallel programming, spreading DO loops or shared
DO loops. The different names tend to reflect a mix of persona! preference
and different historical origins. Also, at one rime each was associated with
particular hardware and specific vendors, but it is ail essentially the same
broad type of parallel programming. It is an attempt to move on from the
fine -grained parallelism that exists only within a DO loop that vector process
ing exploits to a medium and more coarsely grained form. ln many ways, tllis
requires more complex hardware and software and as a result it has had a
long gestation period. Indeed, it is only really in tl1e 1990s tl1at tllis approach
to parallel HPC has become a practical proposition. One of tl1e autl10rs
remembers using an Encore Multima.\'. witl1 twenty processors in tl1e mid
l 980s . There were only t:wo problerns. First, me compiler was buggy and

140 Shared-loop and data parallel programming

undeveloped, and second, there was no floating-point hardware, which made
it very slow. However, it was without doubt a nice computer science play
thing. Today, this sort of parallelism is widely available in workstations with
multiple CPUs (for example, the Sun Ultra 60 has two processors) as well as
in much more expensive parallel hardware boxes. Indeed, it is destined to
become fairly commonplace as hardware costs fa!! and the technology diffuses
downwards to affordable entry-level HPC. So this chapter is worthy of close
study as a guide to how you may soon be programming your workstation as
a low-end HPC.

6.2 Multi-tasking on shared-memory MIMD machines

6.2.1 Multi-tasking

It has already been noted that vector parallel programming has been the princi
pal HPC tool for about twenty years and that there are real limits to what it can
achieve because of the finely grained and special nature of the parallelism. Yet it
may now be regarded as a historically successful approach to obtaining HPC at
a rime when there was no better alternative (or indeed any practical alternative).
An obvions development was, and still is, to look for other opportunities to
exploit parallelism at higher levels of abstraction within a program. Again this is
not a new idea, but it is far harder to achieve from both a hardware and a soft
ware point of view. One reason often given for the slow take-up of parallel pro
cessing relates mainly to the apparently vast investment in non-parallel serial
code or in vector parallel code, which will need to be totally rewritten for other
types of parallel hardware. The fear aspect arises because dus can be a non-trivial
task involving considerable cost and rime, cf the costs of fixing tl1e so-called mil
lennium bug. So multi-tasking was invented by the vendors ofvector supercom
puters to offer an easy way of obtaining better performance while avoiding the
potential problems of having to parallelise existing vector codes by rewriting
tl1em from scratch. Indeed, if you are already a vector supercomputer user tl1en
it is clearly not wortl1 doing dus rewriting if there is an easier alternative in tlle
vector supercomputing world. This attraction was probably greater in tl1e early
l 990s, at a rime when tl1e promise of parallel processing had not fully materi
alised and parallel programming was not standardised. Indeed, even today tl1ere
is still an ongoing need for replacement vector supercomputing hardware driven
by user demands to continue using legacy codes, although in a geography and
social science context tl1is is much Jess of a problem, due to an absence of major
legacy codes! When you are starting from scratch, tl1e only baggage from the
past is tl1e conversion of serial code .

Multi-tasking or macro-tasking on MIMD hardware is simply defined as a
computer set up so tlut it can allocate more than one processor to work on
a single program or so tlut multiple progran1s can be run simultaneously. It is a
shared-memory form of MIMD computing.

Multi-tasking opportunities Glll exist at different places witlùn a program:

Multi-tasking on shared-memory MIMD machines

1 at tlle whole program level;
2 at tlle subroutine level; and
3 at the DO loop level.

141

Again, you are reminded tl1at multi-tasking is a fairly coarse-grained form of
parallelism. This reflects tl1e fact tl1at the number of processors used in tl1e
shared-memory maclùnes tl1at offer mlÙti-tasking are limited, and hence best
performance may be aclùeved by dividing the work up into fairly large chunks.
Multi-tasking at the whole program level is clearly tl1e most extreme case, but it
can be very usefi.ù witl1 very lùgh levels of efficiency. For example, ifyou are run-
1ung tl1e same program a number of rimes (on different data), do you split tl1e
work Joad between mlÙtiple processors so that tl1e rime talcen for a single pro
gram run is reduced or do you simply run an identical program on multiple
processors witl1 each processor working on different data? The latter is far more
efficient (100 per cent) tlun tl1e best of the former, but it is not always possible
or relevant. Another common example occurs in Monte Carlo simlùation work,
where tl1e aim might be to independently run a complete code 10,000 rimes.
Such a code might be termed trivially parallel or embarrassingly parallel, but tl1e
only embarrassing aspect here is tl1at it wmùd do extremely well on this type of
parallel maclùne offering optimal levels of performance and scaleability. Is that
really a cause for embarrassment or rejoicing? Unfortunately, not many problems
needing HPC can be dealt witl1 in such a simple and efficient faslùon, because
the parallel parts are harder to define, occur witl1in programs and are complex.
Also, a whole-program parallelism would in practice probably be more Wcely to
be converted into parallel subroutine calls because it gives you more flexibility
(in storing tl1e reslÙts) as well as looking better to outsiders!

Maybe it is easiest to tlùnk of imùti-tasking as the equivalent to an oitter loop
form of parallelism and as such it is a natural complement to tl1e vectorisation
of tl1e innermost loop . However, it is more flexible tl1an tl1is and can be
applied to inner loops and intermediate loops as well, more or less depending
on where tl1e parallelism exists and, particularly, where tl1e compiler tlùnks it can
be most readily, safely and efficiently exploited. You are now liberated from tl1e
restrictions and fuùcky nature of vectorisation, so you can now use ail manner
of recursive data structures witl1out any Joss in performance, provided that tl1e
parallelism exists at a lùgher level tl1ai1 tl1ese complex data structures. Additionally,
tl1ere is another am·action . The single rùcest feature of multi-tasking is that
typically the compiler will do most or ail of the hard work for you. It will often
offer ai1 immediate performailCe gain without you having to do much or any
thing at ail. Only occasionally will your program nm slower tl1an before. Tlùs
form of pai·allel programming involves least effort, but it also provides possibly
tl1e least benefit. The maximum level of speeding-up is related to tl1e number
of available processors, ai1d typically tl1is will be in tl1e range eight to 32 or
perhaps 64, and even tlùs assumes that a problem can be split into eight to
64 fairly lai·ge chunks of pai·allel computation. It is your responsibility to

ensure tl1at the algoritlm1 is so conveniently parallel. This is not always easy or

142 Shared-loop and data parallel programming

straightforward, and as processor speeds increase so the parallel regions have to
become larger.

In theory, then, mtùti-tasking is transparent, fairly easy and can be automatic,
provided that either the compiler or the user can identify where the 'best' or
most productive parallel regions are located in the code. The bard partis ensur
ing that these independent parallel regions exist; that they are correctly identi
fied as such by the compiler; tl1at you have not accidentally or unwittingly
inhibited parallelisation; tlrnt tl1ey cover the most computing-intensive sections;
and that tl1ey absorb a sufficiently large fraction of total execution time to make
multi -tasking worth while. Load-balancing problems (viz. spreading tl1e work
evenly over ail tl1e available processors) may limit efficiency as tl1ere is a need to
ensure tl1at each parallel region takes tl1e same amount of time and that tl1e
number of such parallel regions is an integer multiple of the number of
processors tl1at are available .

To summarise, multi-tasking is a fairly crude but well-developed and mature
form of simple parallel programming tl1at only works really well on suitable
problems and ilien offers a speed-up of Jess tlrnn some factor defined by tl1e
number of processors used. Remember also tlrnt on shared-memory machines
tl1ere are limits to how many processors can be used because of memory con
flicts. The hardest part about multi-tasking is identifying tlie parallel regions in
tl1e code witl1 partictùar regard to ilie need to distinguish between tl10se vari
ables which are local to a parallel region and tl10se which are global to al! such
regions. This problem is common to al! of parallel programming and is one of
tl1e potentially most diffinùt aspects to master, as a code run on a single proces
sor is executed quite differently when run on multi-processors! Fortunately, tl1e
compiler is usually sufficiently clever to do dus for you, malcing multi-tasking
st:raightforward and involving few code changes. It is ilierefore an excellent place
to start considering tl1e problems of real parallel programming. However, it
always pays to examine your code to see where tl1e compiler tl10ught it was use
ful to multi-task. These are tl1e places where, later on, you may lilce to consider
DO loop sharing and otl1er forms of parallel work distribution.

6.2.2 Converting or modifying programs for multi-taslzing

Usually, little or no conversion will be needed for well-structured and efficiently
vectorised code. However, if you believe tl1at conversion is needed (or you think
you can beat tl1e compiler by identifying tl1e parallel regions for it) tl1en tl1e
following approach is one way of doing tllis conversion.

Step 1: Run tl1e original serial code and keep tl1e results. Malce a note of tl1e
time talcen. This is tl1e target you need to beat.

Step 2: Vectorise tl1e code (see tl1e previous chapter for ad vice) but try to avoid
hampering vectorisation by reducing tl1e size of DO loops in antici
pation of later parallelisation. Go for tl1e best performance you can
achieve on a single-processor vector machine.

Multi-tasl<ing on shared-memory MIMD machines 143

Step 3: There are now tlu-ee options: eitl1er let tl1e compiler do tl1e 1mùti
tasking changes for you, or do tl1em ail yourself, or try a mixture of
botl1 approaches. Here it is assumed you are going to do it ail , or at
least consider what to do if you were going to do it yourself. You need
to know tllis, because it is very relevant if you are writing new code
from scratch and also later on when htmting for parallelism in your old
serial code.

Step 4: When converting existing code, start by loolcing for any remaiiling
major computational bottlenecks by profiling a typical run. Then for
tl1ese 'hot spot' regions check for data dependencies and brealc tl1e code
up into chunks tl1at are computationally independent and do not mod
ify tl1e same data during concurrent running. If you are writing new
code, tl1en try to avoid possible later problems due to data dependencies
by anticipating tl1e problems at tl1e earliest possible stage . Unfor
tunately, efficiently written serial codes seldom translate easily into
good parallel codes witl1out some effort. In an extreme case, you may
have to undo some of tl1e code fiddling designed to optimise single
processor execution if, for example, it creates load-balancing problems.
For optimum efficiency, each parallel task (chunk of code) needs to take
tl1e same length of time . You may also have to change your style of code
writing to create or emphasise the notion of parallel regions. If in
doubt tl1en code up a simple version of your problem or a slow bit of
code, run it tlu-ough an automatic multi-taslcing compiler, and see what
problems it flags and what changes it did to your code. Then try to
improve on it by responding to compiler warning messages and by
tlnnlcing about exactly what you are trying to do.

Step 5: Split tl1e computationally heavy sections of code into parallel sub
routines tlrnt do a reasonable chunk of work and contain collections of
otl1er subroutine calls, varions DO loops and scalar code. It is im
portant to ensure tlrnt tl1e logic of tl1e program remains tl1e same as
previously despite quite major surgery and changes to structure.

Step 6: Insert calls to tl1e parallel subroutines in your main program. Switch on
al! available subscript checlcing and debugging aids. Carefully examine
compiler wanling messages and alter code to respond to any compiler
complaii1ts tl1at dlls or tl1at statement bas stopped parallelisation. There
are some tl1at you can never do anytlnng about, but if tl1ere are any
where you can, tl1en do it!

Step 7 : Carefully check the use of ail CO MM ON data and if necessary remove
it from tl1e parallel regions. Separate local from global variables and
handle tl1em properly. Agaii1 the use of subroutines will help you to do
tllis, since most variables used witllin a subroutine should be local to it
and not available outside. The Fortran COMMON statements (and
equivalents in otl1er languages) cause great problems to compilers
because tl1e variables stored tl1ere can be updated anywhere in tl1e pro
gram and tllis will often inllibit parallelisation. Fortran 90 is much

144 Shared-loop and data parallel programming

better at its declarations of explicit local and global variables than
Fortran 77, where it can be implicit and harder to spot.

Step 8: Debug and test the code. It is very important to ensure that the results
for the original benchmark runs are identical and that the wall dock
rime talcen is reduced! ldeally, an eight-processor run should be up
to eight rimes faster, but even four rimes faster would be good.
Unfortunately, when u·ying to debug your code many debugging aids
tend not to be useful if you run into problems. The difficulty is that
each processor can hold different local values of the same variables!
This malces symbolic debugging very difficult, because you can easily
become completely confused. As a result, the old-fashioned PRlNT
statement is still widely used to debug parallel code . Also, because of
shared memory, different processors may be changing the same data
concurrently, and it is very easy to malce logical mistalces, and it is not
uncommon to talce a long rime to detect tl1em . The most frusu·ating
thing about parallel bugs is that they usually go away when only one
processor is used! Also, some parallel bugs can be intermittent: tl1ese
are very hard to detect and once detected, to u·ace to the source. If tl1e
results do not match your gold standard based on a serial run tl1en
'congrantlations', you have broken tl1e program and may need to

renirn to the original version to detect those changes or enhancements
tl1at may be causing tl1e problems. Finally, if you believe your parallel
code to be bug-free, then tl1ink again - you could easily be wrong! So
play safe and deliberately add exu·a code tl1at only does checks on the
accuracy ofyour logic .

To summarise, if you are doing tl1e multi-tasking yourself then tl1ere are some
standard procedures you canuse . Landau and Fink (1993: p. 336) suggest tl1at
you look for or create:

1 independent or unrelated subroutines;
2 arrange loops witl1 vector (inner) and parallel (outer) loops clearly defined;
3 split vector operations whereby long DO loops are divided up, allowing

vectorisation on different processors; and
4 create long vectors by collapsing multi-dimensional arrays into a one

dimensional form. This is probably tl1e only change tl1at a modern compiler
will not now do for you, because quite often it is a complete pain requiring
large numbers of code and algoritl1111ic changes. You only doit ifyou really
feel you have to, because it is an excellent way to stop a perfectly good pro
gram working for at least a wlllle. You probably also think that program
ming languages let you have multi-dimensional arrays to malce your life
easier. Well, tl1at is u·ue, but if you want to exploit tlùs sort of HPC hard
ware and push it to tl1e limits ofwhat it can do, tl1en maybe tl1e 'gain' will
justify the 'pain'; or else forget it!

Multi-tasl<ing on shared-memory MIMD machines 145

Finally, remember tl1at tl1ere are also many more mind-bogglingly new problems
and potential bugs tl1at lurk in a parallel world just waiting for you to corne
along. Ifyou like a challenge, tl1en start tllinking in parallel. Lilcewise, when you
find a parallel bug tl1en write it down while tl1e pain is still present, because there
is a better tl1an evens chance that you cmtld manufacnire tl1e same bug again.

6.2.3 Programming in parallel

In general, parallel bugs are often much harder to squash than serial ones.
Tlùnking in parallel can be tricky because of multiple instances of the same vari
able. For example, consider tl1e apparently simple task of summing an array in
the following fragment of code:

SUM=O. 0
DO I=l, 1000

SUM=SUM+X (I}
END DO

Tlùs will work perfectly well on a single processor. Now assume that the 1000
data values in tlùs loop are to be shared between two processors; index I values
1 to 500 are nm on one processor and index values 501 to 1000 on tl1e other.
The question now is how to obtain tl1e correct result in the variable SUM? On
a Cray J90 , you could do this as follows:

CMIC@ DO PARALLEL (I} SHARED(SUM}
SUM=O. 0
DO I=l, 1000

SUM=SUM+X (I}
END DO

The compiler shares out tl1e work for you, which is rùce . Unfortunately, SUM is
a shared global variable (just as it would be if stored in COMMON) tl1at the DO
loops on each processor will want to change at tl1e same rime, leading to poten
tial memory conflicts. In practice, tl1e hardware or software may be clever
enough to avoid tlùs problem by ensuring that each access to the variable SUM
is synchr01ùsed. Tlùs is very 11Îce of it and it gets tl1e answer right, but it can
result in a horrendous loss of efficiency because it is done 1000 rimes, and each
synchronisation forces one processor to wait until tl1e other is fuùshed . The
res1tlt is a program tl1at probably now runs more slowly on two processors tl1an
on one. Yes, it is parallel slowdown!

A better approach is as follows:

CMIC@ DO PARALLEL (I} SHARED(SUM} PRIVATE(LSUM}
LSUM=O.O
DO I = l, 1000

146 Shared-loop and data parallel programming

LSUM=LSUM+X(I)

END DO
CMIC@ GUARD

SUM=SUM+LSUM

CMIC@ END GUARD

The GUARD directive ensures that the local processor-specific results held in
LSUM are added to the global shared variable SUM one at a time at the end of
the shared DO loop. This version runs much faster, because this critical memory
write only occurs outs.ide the loop and not with.in it, so it occurs only twice
instead of 1000 rimes. If ail tllis seems difficult tl1en you can let tl1e compiler do
it for you. At tlle very least it will provide many interesting suggestions as to
how to parallelise your code by generating tl1e code changes tl1at it tllinks are
necessary. It is, tl1erefore, actually a good way of teaching yourself some of tl1e
basics of parallel programming! However, a compiler is seldom as clever as
tl1e huma.il programmer, because it has no innate intelligence or knowledge
of tl1e algoritl1m a.i1d sees only tl1e code you give .it. It will do tl1e best it can witl1
tl1e code you have given it. However, it has to preserve tl1e logic of tl1e original
code, but qui te often it is only by modifying tl1e logic of tl1e algoritl1m tl1at opti
mal levels of performa.ilCe can be acllieved. Only you a.i·e clever enough to per
form tl1at task. Remember tliat if tl1e compiler gets confused it will do notlling
a.i1d leave tl1e code 1mcha.i1ged.

6.2.4 Case study 1: a multi-tasking GAM example

Let us start witl1 tl1e GAM. The full GAM in its fully optinlised vectorised form
is run on a ten-processor Cray J90 . Tllis produces tl1e results in Table 6.1. Note
tliat on tl1e final llighly optimised version of tl1e GAM it took 73.5 seconds a.i1d
ran at 5.5 Mflops to complete tl1e full problem. An equivalent run on a single
processor took 261 seconds and ran at 18.7 Mflops. Tllis is somewhat less tlian
tl1e optimal speed-up, but it is not bac!.

Table 6.1 GAM test problems on Cray J90 with ten processors using multi-tasking .

Algorithrn Cray]90 CPU Crny Mflops/s Multi-taslling
tirne

version 1 195.0
version 2 49 .3
version 3 49 .3
version 4 41.3
version 5 77.2
version 6 27.l
version 7 1.6
version 8 1.2

8.5
22 .0
39.0
24.0
38.9
18.0
9.5
8.6

ti1ne
(10 processors)

>3600
2001.1
1283.6

117.9
1394.4

101.4
73.5
55.3

Parall.el isation strategies 147

It is useful to see what tl1e compiler cl.id to ensure safe execution on multiple
processors and also where it found tl1e parallelism to be exploited. Appendix 6.1
shows tl1e coding for Version 1 of tl1e GAM and Appendix 6.2 tliat for Version
8. Tllis is also indicative of tl1e sorts of changes to tl1e code tl1at a.i·e needed for
otl1er types of shared-memory computing.

6.2.5 Case study 2: a multi-taslzing origin-constrained spatial
interaction model

Here tl1e single-processor time was 2.95 seconds at 65 Mflops. The ten-processor
time was 1.44 seconds at 61.2 Mflops. Appendix 6 .3 gives tl1e modified spatial
interaction model code after tl1e multi-task.ing compiler had fülished witl1 it.
Note tliat tl1e best performa.iKe was acllieved witl1 tl1e original unrolled version.
Far less modification is needed here, because tl1e code is already in a data paral
lel form . The principal problem is tl1e lack of sufficient computational work to
keep tl1e maclline busy. The aritl1metic load is N 2

, but tl1ere is insufficient
memory to allow tl1e processing of problems wllich are la.i·ge enough to keep tl1e
J90 processors fully loaded. This is anotl1er reason why tllis form of parallel
computing has a restricted future.

6.3 Parallelisation st:rategies

6.3.1 Hunting for parallelism

Anytlling more complex tl1an multi-tasking or data-parallel problems requires
tl1e user to start to look for or to create parallel regions witllin code. Landau a.i1d
Pink (1993: p. 332) have tllis to say:

The key to pa.i·allel programming is to identify where your program will
benefit from parallel execution. To do tliat tl1e programmer must under
stand tl1e pro gram 's data structures at a level similar to tliat of vector pro
cessing, must know how to synchr011.Îse tl1e results generated by different
processors, a.i1d must assign tasks to different processors of approximately
equivalent numerical intensity (balance tlie load) .

The secret is to sta.i·t tllinking in a parallel but non-fü1ely grained way! Yon need
to look for large-scale parallelism, and far more opportmlities ex.ist tl1a.i1 you may
at first believe possible or tl1a.i1 you found in tl1e vectorisation world or by study
ing multi-tasking compiler reports. However, if you cannot find any or enough
parallelism in your existing algoritl1m or code tl1en you will have to change one
or tl1e otl1er, or botl1, so tl1at you can. Otl1erwise, your career as a parallel pro
grammer will come to a very speedy end, or you will be forever limited to a
relatively simple range of problems.

So you need to sta.i·t structuring and restructuring algoritl1ms and code for
parallelism, and tl1is involves much more tlian 'merely' tmling inner DO loops

148 Shared-loop and data parallel programming

and finding shareable outer DO loops. Porting may now be much less of an
automatic activity. It may well require considerable exu·a work as you redesign,
rethink and rewrite code that once worked fine in a serial or in a vector or multi
tasking environment; but then the gains are also potentially far greater. The aim
is to su·ucture code in such a way that there is enough work to keep multiple
processors as fully employed as is possible with a minimum of idle time due to
lack of work or communications delays.

6.3.2 Problem decomposition

Balcer and Smith (1996: p . 91) write, 'Identifying parallelism in an existing algor
ithm is usually clone by examining the existing code in detail and determining
which parts can be easily modified to nm in parallel'. A key question is whether
or not to preserve the algorithmic sU"llCture of the serial code. However, do not
get too sentimental here! Convenience is relevant, but efficiency might be more
important in an HPC context. Those parts of the algoritlm1 that cannot be run
in parallel need to be changed or redesigned and maybe even entirely new paral
lel algoritl1ms devised. The job of identifying and splitting out tl1e parallel parts
for execution on multiple CPUs is called problem decomposition. Dowd (1993:
p. 294) writes: 'Once a problem has been decomposed for multiple processors,
people say it has been parallelised'. The challenge for algoritl1111 writers is how to
design new algorithms tl1at have tl1is property built in . The difficulty is tl1at
while some problems are clearly parallel and are easily coded for a parallel
processor, others may be almost entirely serial in nature and require completely
new algorithms before they will work well. Yet otl1ers are parallel in nature, but
tl1e parallelism has been destroyed by serial tlunking and is now buried or
obscured by the metl10d used or by the way it was programmed. Tlunking in
parallel is not easy tmtil you u·ain yourself to do it; then it is much easier tlrnn
you tl1ought it would ever be.

There are some basic principles tl1at may heJp here. There are two general
approaches to problem decomposition for the disu·ibution of work between
multiple processors:

1 data decomposition; and
2 conu·ol or functional decomposition.

In data decomposition, the data are partitioned into pieces and each chunk is
distributed to a separate processor. Each processor does tl1e same calculation but
on a different chunlc of data. In tlus way, tl1e disu"ibution of data is effectively a
sharing of tl1e computational Joad. This is essentially a data parallel and muJti
tasking route . Tlus works well on regular problems but tends to work far Jess
well on irregular problems, wluch resuJt in unbalanced Joad distribution.

In conu·oJ decomposition, different processors are given different tasks to per
fonn or are repeatedly reassigned new tasks as soon as tl1ey become idle. This is
a more useful and more general form of parallelism, since it requires that each

Parallelisation strategies 149

processor can act independently. However, it is more difficult, and it too may
also have problems in scaling. Dowd (1993: p . 299) identifies the problem as
follows: 'how do you talce four processors doing four separate jobs and scale tl1e
computations up to eight processors?' Once your algoritl11n scales well to eight
processors (i.e. wall dock rimes dimirush linearly witl1 increasing numbers of
processors), tl1en consider 64 or 256 or 1024! Ideally, you need to build
scaleability into tl1e algoritl1m. The approach used depends on tl1e problem and
the available hardware. Anotl1er way of viewing tlus design task is in tenns of
how to disu"ibute tl1e workload of an algoritl11n evenly so tl1at it can be
processed in parallel. If tl1e parallelism is not self-evident, then you have to

'create it'.
Load balancing is a very important concept here. The work needs to be

divided up fairly or evenly disu·ibuted, because tl1e speed of the program will
depend on the time ta.ken by the processor tl1at talces tl1e longest time. Tlus
might also be termed tl1e convoy principJe in tlrnt tl1e speed of a convoy of ships
is determined by tl1e speed of tl1e sJowest.

Imagine you have N cases to process , and N is fairly large . The cases might be
aspatial, but tl1ey could also be spatialJy su·uctured. Lilcewise, tl1e computation
to be applied to each case couJd invoJve just one case or its immediate spatial
neighbours. The task now is how best to di.vide up tl1e N cases into K chunks,
where K is some number greater tlrnn, or better still, equal to, tl1e number of
available processors. Mappable data are often readily decomposed using varions
grid-based or two-dimensional mesh-based structures; see Trewin (1998) .

More generally, Wilson (199 5: pp. 46-49) identifies five broadly different
approaches tl1at can be used to parallelise applications or assist in developing

new algoritl1ms. They are:

1 geometric
2 iterative
3 recursive
4 speculative
5 functional

In geometric decomposition, tl1e problem is disaggregated into tasks tl1at reflect
some physical subdivision of tl1e system being modelled. Each processor is
assigned a spatial domain plus a boundary. This offers good scaleabiJity if it can
be clone and will malce good use of disu·ibuted memory, but it is really only sui.t
able for certain types of problem. Fornmately, a geomeu"ic decomposition
approach is Jughly applicable to most of tl1e two-dimensional map-based pro
cessing in GIS, wluch is naturally parallel. Tlus will also work well when there is
a strong locality or neighbourhood effect tl1at can be expJoited. For geogra
phers, tl1e map is a wonderfully parallel search space. Vi.rtually any and all appli
cations of search over a two-dimensional map, operations performed on a map
or processing reJating to tl1e modelling of a spatial system will be parallel in one
form or anotl1er. As Openshaw and Openshaw (1997) note, you can become

150 Shared-1.oop and data parall.el programming

smarter in many spatial analysis and modelling tasks not only by becoming more
sophisticated in terms of the technology being used but also by engaging in a
more finely grained spatial search. This will work provided that the parallelism in
the search is fully exploited and that there are not more than about a few thou
sand million locations to examine! Additionally, the t:ypically positively spatially
auto-correlated nature of much map data brings other benefits. In particular,
locality effects are very strong, so that when data dependencies exist they are
localised. This can be a particularly nice aspect to have from a parallel program
ming point ofview as it can reduce communications traffic.

However, the decomposition strateg)' need not only be based on data : most
are based on dividing up algorithms into parallel chunks. Ite1'ative decomposition
involves brealcing down an algorithm in which one or more operations is repeat
edly applied by executing these operations in parallel, or at least redesigning the
program so tl1at tllis occurs. Simulation models, parallel simulated annealers and
genetic algoritl1111s can ail benefit from tllis decomposition su·ateg)'. A rernrsive
approach involves brealcing a problem down into parts tl1at can be handled
directly or further broken down into yet smaller parts . However, tl1ere is often a
very su·ong relationsllip between tl1e degree of parallelism and tl1e amount of
work being done! Speculative decomposition involves performing many indepen
dent calculations concurrently and tl1en using tl1e results of the first one to
complete, tl1ereby stopping and discarding tl1e remainder. Sorne optimisers and
search metl1ods work Wce tllis. The search continues until an improvement is
found; tl1en it restarts a.round tl1e current best. Tllis is more a metl10d of search
tl1an a decomposition su·ategy and appears computationally wasteful, but it is
mainly concerned with improving the quality of tl1e results ratl1er tlrnn speeding
it up .

Finally, functional decomposition in volves dividing up the fonctions of tl1e pro
gram and ru1111ing ail tl1e parts concurrently. Tllis is very nice if it can be done at
a sufficiently coarse-grained level as it promises maximum levels of performance.
A very common metl1od is tl1e task farm or slave- master approach (Poster,
199 5) . A classical mas ter- slave approach is for one processor (tl1e mas ter) to
divide up tl1e work and send a chunk to each processor (tl1e slaves); it does not
matter if the clrnnks are of uneven size. When a slave processor has finished its
allotted task, it sends back tl1e results and asks for more work. This approach is
widely used in message passing; see Chapter 7. It tends to produce good Joad
balancing. It works best when tl1e number of tasks is large in relation to tl1e
number of processors (say a factor of several thousand or more) and each
involves sufficient computation work so tl1at tl1e interconnection used to com
municate between tl1e master and slaves is not overloaded. How tllis works in
practice is discussed later.

6.4 Data parallel programming

6.4.1 The attractions

Data parallel. programming 151

An alternative approach to mtùti-taslcing at tl1e macro scale and of parallelising
algoritl1111s is to consider whetl1er tl1e problem can be handled in a simple data
parallel mam1er. Data parallel processing is where one operation (or set of oper
ations) is applied to ail elements of tl1e data simultaneously. It is termed 'data
parallel' because me data (and hence tl1e associated computation) is disu·ibuted
out to tl1e processors . This approach was once restricted to SIMD macllines but
is now far more widely applicable because of tl1e appearance of array operations
in Jligh-level languages . Originally, these language extensions were vendor
specific and were used to program array processors of tl1e ICL DAP and con
nection macllines in tl1e mid-1980s and early 1990s. H owever, more recently
tl1ese array-processing extensions have been absorbed into standard program
ming languages such as Foru·an 90 and more particularly High-Performance

Foru·an (HPF).
Data parallel programming is almost as easy (some would say easier) as vector

parallel programming, but it is a more general mode! tl1at1 the vectorisation
process and tlrns offers more opporumity for pai·allelisrn to be exploited. It
opera.tes at or witl-ün tl1e DO loop . In its sirnplest form, it requires that ail DO
Joops vectorise and tl1e entire prograrn consists of array or vector operations or
that it can be recast into tl1at format. It is tl1erefore exu·emely well suited to
types of scientific programming tlrnt involve arithmetic operations performed on
large atTays of data, viz. physics, seismic ai1alysis, weatl1er forecasting and

weapons development.
So in data parallel prograirnning tl1e parallelism is defined by tl1e disu-ibution

of tl1e data arrays in tl1e parallel memory space . At its simplest , tl1is name is given
to code mat can be expressed as a sequence of array operations. The advai1tages
are (1) tllis cat1 make tl1e programs easier to read ai1d write; (2) lligh-level data
parallel programming languages exist tl1at leave the irnplementation on specific
hardware to tl1e compiler, allowing tl1e programmer to concentra.te on me code
and algoritl1111; and (3) it should yield results tlrnt provide optimal performaiKe
for a pai·ticular maclline while still being portable. The problem is tl1at mai1y

algoritl1ms are not suitable for tllis approach.

6.4.2 Some examples of data parallelism

Typically, in a data parallel programming lai1guage tl1ere is a close correspon
dence witl1 atTay notation, but tllis is not tl1e same as mau"i.,'I: algebra. Consider,

for example, tl1e statement:

A=B*C

where A, B ai1d C are arrays. This is not tl1e mau"ix algebra interpretation tl1at
mau"ix B is post-multiplied by mau·ix C. Instead, it specifies the multiplication of

152 Shared-loop and data parallel programming

each element of B by each element of C, the restùt being stored element by ele
ment in A. So this single statement performs the equivalent of the following
Fortran code:

DO I=l,N
DO J=l ,N

A(I,J)=B(I,J)*C(I,J)
END DO
END DO

where N is the dimension of arrays A, B and C . Your programs instantly become
shorter and more compact. This is useful, because experience suggests tl1at short
programs are much easier to de bug than long, complex ones . Note tl1at tl1e pre
cise implementation of tl1e code is left to the compiler, which is presumed to
know how best to optimise tl1e order of memory accessing, etc. for specific hard
ware . This cotùd be very efficient or very poor, depending on tl1e life stage and
manirity of tl1e compiler. Note tl1at tl1e inter-processor data communication is
implicit and invisible to tl1e user, since in practice tl1e simple statement A = B *
C may require access to elements of these arrays held on many different proces
sors. Synchronisation is also implicit. Finally, data parallelism extends to include
reduction operations (i.e. a global sum). A surprisingly large number of prob
lems can be expressed in a simple data parallel form, which malces tllis a very easy
patl1 to parallel programming tl1at is partictùarly appealing for many statistical
and matl1ematical modelling applications. Monte Carlo simtùation and otl1er
computationally intensive statistical metl1ods are easily implemented.

Botl1 Fortran 90 and HPF offer some nice array syntax. For example, to sum
ail elements of array X:

REAL::C

REAL, DIMENSION(l00,100) X
C=SUM(X)

There is also a parallel IF, called WHERE, tl1at can also be used on arrays; for
example,

WHERE (X .GE. 0.0) X=ALOG(X)

In bath cases, array X has 100 rows and 100 columns, so tllis ope.ration is per
formed 10,000 rimes. Programming witl1 arrays in High-Performance Fortran is
an even more useful approach. An international standard for HPF has now been
defined, but tl1ere are as yet few fully compliant compilers. However, the ben
efits of simplicity in coding reflect a fairly restricted form of parallelism. Mat:rix
ope.rations and mathematical expressions are most easily handled, but more
complex algoritl1ms may create problems due to inflexibility. Additionally, you
have to trust tliat tl1e compiler will do its work well and correctly, and tllis at
present may sometimes be premature.

Data parallel programming 153

These types of data parallel programming problems are often termed embar
rassingly parallcl. However, tllis is a very useful atu·ibute if you wish to exploit
parallel hardware fully, since it offers a good prospect for a dramatic performance
gain witl1out any great need for algoritl1m redevelopment. Such problems ~e
easily programmed, altl1ough not ail or many applications can be expressed 111

tllis form. The words 'embarrassingly parallel' may imply triviality and a Jack of
challenge. However, tllis is both unfair and nlÎsleading. It is what you do with
the code tl1at is important, not how it appears. The nicest tlling about embar
rassingly parallel code is tl1at it runs at an embarrassingly parallel speed! In fact,
it cotùd be suggested tl1at it is otl1er users who should be embarrassed by the
absence or poor levels of parallelism in their own code.

However, even here parallel programnling is seldom completely simple, and it
is necessary to worry about how tl1e arrays are defined, tl1e nanire of tl1e opera
tions being performed, etc. if you are to squeeze out tl1e best performance .
The main disadvantage is tl1e diffinùty of handling irregular or heterogeneous
computation. Also, not ail (or indeed many) problems can be expressed in a
pure data parallel form. Sorne will require considerable effort to restrucnire tl1e
algoritl1ms and remove data dependencies that would ruin performance.
However, in two to five years time tl1is situation may be quite different as com
pilers improve and become smarter in how they do their business. So watch
tllis space !

6.4.3 Data parallcl GAM

Let us renirn to tl1e case snidies used in the previous chapter. Unfortunately,
tl1ere is an instant snag. The GAM is not a straightforward data parallel problem
and cannot be expressed in an efficient data parallel form. So we shall move on
to look at the spatial interaction mode!, wllich is easily expressed in a data
parallel way.

6.4.4 Data parallcl spatial interaction model

The spatial interaction mode! is forninately a very straightforward data parallel
problem. At its simplest, tllis is equivalent to multi-tasking and data parallel
programnlÎng in wllich complete sets of DO loops are parallelised. The DO
PARALLEL compiler directive was one of tl1e earliest forms of parallel pro
gramnlÎng with a shared memory. It is very simple, but remember that tl1e
potential performance gain is limited to some factor Jess tl1an the numbe~· of
processors, and tl1e number of processors on non-distributed-memory machines
tends to be limited.

The spatial interaction model written in HPF is given in Appendix 6.4. Note
how short tl1is code is compared with previous versions, even allowing for the
data generation step being replaced by reads. The only changes made to the
serial somce code presented earlier are to insert some compiler directives.
These are:

154 Shared-loop and data parallel programming

!HPF$ distribute (BLOCK,*) : T,C

Now that was not hard! Yet this instructs the compiler that the arrays T and
C are to be distributed between the processors with the first dimension split
in blocks. The directive !HPF$ INDEPENDENT tells the compiler that the
following loop can be parallelised (or executed independently). Since both
these directives look like a comment to a normal Fortran 90 compiler, the
same code can be compiled and run on a serial machine without difficulty.
The intrinsic fonction SUM can be either a serial subroutine on a uniproces
sor machine or a parallel subroutine on a multi-processor machine; however,
since it is provided by the compiler writer you do not need to know what
the best method for summing an array on any particular machine is: you just
use the intrinsic fonction and hope that the compiler gets it right (it usually
will) .

There are some performance issues to be considered about how you <livide
up the data between different processors. You as the programmer must make
these decisions, since the compiler cannot tell how you in tend to use the data .
HPF provides nvo ways to <livide up an array: cyclic and block. In a cyclic data
distribution, element 1 of the array goes on processor 1, element 2 on proces
sor 2 and so on until element n goes to the n'11 processor, then element n + 1
goes to processor 1 and so on. ln a block distribution, elements 1 to in go on
processor 1, where in is the size of the array divided by n, the number of
processors. Each processor is allocated 1n elements of the array, although
processor n gets the remainder of the elements which may be Jess than in· for
instance, with four processors and ten element~, processors 1, 2 and 3 wiÙ be
given three elements and processor 4 will be given one . Obviously, this will
lead to some inefficiencies as processor 4 will ahvays run out of work before
the first three processors. If, however, a cyclic distribution is used then
processors 1 and 2 would each receive three elements of the array and proces
sors 3 and 4 would receive two elements, which while still not perfect is much
better than the block method. See Figure 6 .1 for an illustration of the se stor
age patterns.

The most fundamentally important aspect of data distribution is tint it
affects the performance of the program. For example, if you have a two
dimensional array, A, with N rows and N columns, which of the two data
distribution strategies is likely to be the more efficient if you wish to sum the
first column? Let us assume that N = 1000 and the number of processors is
ten .

If you tl10ught cyclic then you would be wrong, because block distribu
tion would be better. The reason is tl1at data are stored in Fortran arrays in
column order. Cyclic data distribution scatters the data in each column over
many processors, whereas block keeps it in contiguous chunks. Maybe you
thought that the parallel processor could access any data more or Jess simul
taneously. Weil this is almost true on shared-memory machines, apart from
the usual memory latency. However, it is certainly not true of a distributed-

Conclusions 155

array element 2 3 4 5 4 7 8 9 10

cyclic processor allocation 2 3 4 2 3 4 2

black processor allocation 1 2 2 2 3 3 3 4

Figure 6.1 Cyclic and block distribution of data elements.

memory machine, where data are distributed and results received as mes
sages travelling along a processor interconnection network. In HPF, the
code is identical, but on a distributed-memory machine the compiler is,
unknown and invisible to you, generating vast amounts of inter-processor
messages. Remember the golden rule of distributed-memory machines is
tint code which generates tl1e fewest messages is probably best. So tl1e lay
out of the data can be crucial, because if you distribute it badly you may
cause your program to run far more slowly than otherwise . Incidentally, this
is also true, albeit to a far lesser degree, of ail computers. Processors prefer
their memories to be accessed sequentially, and parallel machines witl1 dis
tributed memories slow down by large factors once they have to perform
lots of memory reads and writes to non-local memory attached to other

processors.

6.5 Conclusions

This chapter has described ways of parallel programming witl1out too many
tears or too much effort. These simple approaches may be sufficient for most of
the problems of operating in parallel to emerge, if any are likely to do so. The
main criticisms have been that tl1e resulting code tends to be non-portable
because of vendor-specific language add-ons to Fortran and C to handle the
shared DO loops and a corresponding Jack ofuniversal standards. However, the
standardisation of Fortran 90 is very important as it includes data parallel syn
tax. Additionally, tl1e emergence of High-Performance Fortran seems likely to
provide an easier way of programming botl1 shared- and disu·ibuted-memory
MIMD and SIMD machines witl1 non-uniform memory access (NUMA) rimes.
The attractions are that the resulting code is portable and far easier to write and
considerably Jess complex than message passing. Also, right now NUMA archi
tectures are becoming increasingly popular, so this broad category of hardware
looks set to become qui te popular in tl1e early years of the twenty-first century.
Additionally, tl1e multi -tasking, shared DO loops and vectorisation models of
parallelism can ail be handled. A possible disadvantage is tl1at tl1ere can be some
concern about Joss of performance, since tl1ere is an assumption of synchroni
sation. Sooner or later the processors have to stop and wait for the full set of

156 Shared-loop and data parallel programming

concurrent tasks to be completed, and this assumes an evenness of the parallel
tasks. Maybe a data parallel approach will always be regarded as being too simple
by the parallel-processing connoisseur, but is this really significant? It depends on
the problem. For some applications, nothing else will be needed and
considerable complexity can be avoided. For other problems, it will not work at
all .

There is an increasingly strongly held belief that this type of parallel program
ming will sooner rather than later become the dominant mode! via high-level
languages such as HPF. Yet for the cautions, the safest advice would be to use
message passing based on a standard library, as described in Chapter 8. In thirty
years time this will probably still work, whereas HPF might well have been and
gone. On the other hand, HPF seems to be att:racting an increasing degree of
vendor support. For some applications, HPF may well provide a very good and
guide solution, and since it is a high-level language it is easily used. Maybe there
is a whole class of geographical problems that are suitable for this approach. If
you are a beginner, then using HPF would be a good place to start your
parallel-programming career.

Appendix 6.1: multi-tasking code of GAM Version 1

The interesting sections are those flagged by the compiler as
PR parallel region
P parallel DO loops
V vectorisable code
CritReg critical regions where local values are copied to global storage

c~ gam_l. t

c•

IMPLICIT NONE

DOUBLE PRECISION OlV{3000)

REAL QQQ

TASK COMMON/ZlFPPlCM/ QQQ{819 1)

EQUIVALENCE (QQQ(l),DlV)

INTEGER NCASE

PARAMETER (NCASE=l50 000)

DOUBLE PRECISION OVERAT, XMINE, XMAXN, XMINN, XMAXE,

X OBSP' OBSC, RADIUS' DIS' ex, CY' PROB,

X X (NCASE), Y (NCASE), P (NCASE) , C (NCASE) ,

X RADINC, RADMAX, RADMIN, POPHIN, CANMIN, THRESH

CHARACTER*lOO XYDATF , PCDATF, OUTFIL

INTEGER I, LOOP, !COL, IROW

INTEGER TOTCAL,TOTDAT,TOTNCS,TOTNHY, STEP, ID,N,

X MINN, MAXN, MINE, MAXE, NTIMES, NCALC, NDAT, NCALS, NHY,

X N2

INTEGER IlX, JA, J

DOUBLEPRECISIONCUMPRB (3000) , CONS (3000) , AMEAN, OBSClX,

X OBSPlX,X,MINlX, XMIN 2X , XMAXlX, XMAX2X, OBSP2X, OBSC2X

WRITE(6,78001)

78001 FORMAT('*Geographical Analysis Machine GAM/l (Feb 1997) '/ /)

C" Step 1. Read Data============ ==

Generated , Xref

Generated, xref

Generated, Xref

Generated , Xref

Generated, Xref

Generated, Xref

Generated, Xref

Multi-tasking code of QAM Version l 157

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 P- -

54 p

55 P V --------

56 P V

57 p V

58 p V

59

60

C* set constants

C* read ini ,.lile

OPEN (UNIT=l, FILE=' garnfiles. dat' , FORH = 'FORMATTED',

X STATUS = 'OLD')

C* read USER DATA file names

c. this file contains X, Y data

READ(l,10001) XYDATF

c . this file con tains Pop at Risk and Count of Real Cases

READ (1, 10001) PCDATF

10001 FORHAT(A)

C* get output results file name

READ (1, 10001) OUTFIL

CLOS E (UNIT= l, STATUS= 'KEEP')

C* read X-Y data

WRITE(6, 6707) XYDATF

6707 FORMAT(' *User Input X, Y File is; ' ,A)

OPEN (UNIT=l, FILE=XYDATF,

X STATUS = 'OLD' ,

X FORN = 'FORMATTED')

CMIC@ DO ALL GUIDED(64} SHARED(X, Y} PRIVATE(I)

CDIR@ IVDEP

DO I=l,NCASE

X(IJ=O.O

Y(IJ=O.O

END OO

N= O

61 1 -------- DO I = l, NCASE

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78 P--

79 p

BO p V

81 p V

82 p V

83 P-v

84

85

86

8 7

88

89

90

91

92

93

READ(l, *, EN0=999) ID,X(ID), Y(ID)

N=I

1 -------> ENDDO

1 ----

999 WRITE(6, 1 23) N

123 FORMAT(SX, '*EOF at Case Number', IlO)

CLOSE (UNI T = l, STATUS= 'KEEP ')

C* No data read?

IF(N.EQ.0) STOP 1

C* read Population and Observed Cancer data

WRITE(6, 6708) PCDATF

6708 FORMAT(' *User Input Data File is;' ,A)

OPEN (UNIT = l, FILE= PCDATF,

X STATUS = 'OLD',

X FORM= 'FORMATTED')

CNIC@ DO ALL GUIDED(64) SHARED(P, C) PRIVATE(I)

CDIR@ IVDEP

199

OO I=l,NCASE

P(I)=0.0

C(I) =0.0

END DO

N2 = 0

DO I = l,NCASE

READ(l, *, END=l99) ID,C(ID), P(ID)

N2=I

END DO

WRITE(6,123) N2

CLOSE (UNIT=l, STATUS= 'KEEP')

C*No data read?

IF (N2. EQ. 0) STOP 2

Generated

Generated

Generated

Generat:ed

158 Shared-loop and data parallel programming

94

95

96

97

98

99 PR

1 00 PR

1 01 PR

102 PR

103 PR P-

104 PR P

105 PR P V -

106 PR P v

107 PR P v

108 PR P- v -->

109 CritReg

110 CritReg

111 CritReg

112 CritReg

113 PR

11 4 PR

115

116

117

118

119

120

121

122

123

12 4

1 2 5

12 6

1 27

1 28

1 29

1 30 PR

131 PR

132 PR

133 PR

134 PR

135 PR

136 PR

137 PR

138 PR P

139 PR P

140 PR P V

141 PR P v

142 PR P V

143 PR P v

144 PR P V

145 PR P- v

146 critReg

147 CritReg

148 CritReg

149 CritReg

C* Files do not match

IF (N .NE .N2) STOP 3

C* go thru data and produce counts

OBSP=O . 0

OBSC=O. 0

CNIC@ PARALLEL IF(N.GT.1 2 00)SHARED(C, P, N, OBSC, OBSP)

CNIC@l PRIVATE(I DBSClX, OBSPlX}

OBSClX = 0

OBSPlX = 0

CHIC@ DO PARALLEL GUIDED (64)

CDIR@ IVDEP

DO I = 1, N

OBSClX OBSClX + ABS@(C (I))

OBSPl X = OBSPlX + P (I)

END DO

CHIC@ GUARD

OBSP = OBSP + OBSPlX

OBSC = OBSC + OBSClX

CNIC@ END GUARD

CNIC@ END DO

CNIC@ END PARALLEL

X

DO I=l,N

OBSC=OBSC+ABS(C{I))

OBSP=OBSP+ P (I)

ENDDO

WRITE (6,8) N,OBSP,OBSC

FOR.HAT(

*Number of input data records: ', IB /

X ' *Total population at risk: ',FlO.O/

X ' *Total Cases ', FlO. 0)

IF (OBSP . EQ. 0 . 0 .OR. OBSC EQ. 0. 0) STOP 3

OVERAT=OBSC/OBSP

C* Find Nin and Na.x X, 1' values t o define sea.rch region

XNINE=999999999. 0

XHINN=999999999. 0

XHAXE=0. 0

XMAXN = O. O

C .. data are in 1 km units

CNIC@ P.ZJ,R.Zl,LLEL IF (N .GT.900JSHARED(X, l',N.~JINE,~JINN,~lAXE,

CNIC@l XJ.JAXN) PRIVATE(I, XJ.JINlX, ~IIN2X, XJ.IAXlX, XMAX2X)

DO I=l,N

XNINE=DNINl (~JINE, X (I))

~JINN=DNINl (~IINN, Y(I))

XJ.IAXE=DNAXl (XJ.JAXE, X(I))

~IAXN=DNAXl (~JA.XN, i' (I))

END DO

C* data are in lkm units

XMINlX

XMIN2X

XMAXlX

XHAX2X

XMINE

XHINN

XHAXE

XMAXN

CNIC@ DO PARALLEL GUIDED (64)

CDIR@ IVDEP

DO I = 1, N

XMINlX

XHIN2X

XMAXlX

XMAX2X

END DO

CHIC@ GUARD

XMAXN

XHAXE

XlUNN

DM INl(XMINl X,X(I))

DM INl (XHIN2X , Y (I))

OHAXl(XHAXl X,X(I))

DHAXl(XHAX 2X ,Y(I))

DHAXl (XMAXN, XHAX2X)

DMAXl (XHAXE, XMAXlX)

DHINl (XM INN, XMIN2X)

Generated

Generated

Generated,Xref

Generated, Xref

Generated

Generated

Generated, Xref

Generated, Xref

Generated, Xref

Generated , Xref

Generated

Generated, Xref

Generated,Xref

Generated

Generated

Generated

Deleted , Noxref !

Deleted , NoXref !

Deleted, NoXref !

Deleted, NoXref !

Generated

Deleted, NoXref !

Deleted, Noxref !

De l eted , NoXref !

Deleted, NoXref !

Deleted, NoXref !

De l eted, NoX r ef !

Generated

Generated, Xref

Generated,Xref

Generated, Xref

Generated, Xref

Generated

Generated

Generated, Xref

Generated, Xref

Generated , Xref

Generated, Xref

Generated ,Xref

Gene r ated , Xref

Generated

Generated, Xref

Generated, Xref

Generated, Xref

150 critReg

151 CritReg

1 52 PR

153 PR

154

155

156

157

1 58

159

160

161

162

163

1 64

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

1 87

1 88

1 89

190

191

192

193

194

195

196

197 P- -

198 p

199 P V

200 P V

20 1 P V

202

203

2 04

205

206

207

208

209

210

2 11

212

213

21 4

215

Multi-tasl<ing code of QAM Version 1 159

XMINE = DHINl (XIUNE, XIHNlX)

CJ:.JIC@ END GUARD

CMIC@ END DO

CJ:.JIC@ END PARALLEL

WRITE (6, 712 3) OVERAT, XHINE, XMAXE, XHINN, Xl1AXN

7 1 23 FORMAT (
x • •Global Incidence Rate per Population at Risk is ', Fl2 · 8 /

x ' *Minimum Easting is ' , Fl 2 . l,' Maximum is' ,F12.l /

x • *Mini mum Northing is' , F12 .1 , ' Maximum is', F12 · l)

MINN = XHI NN- 1. 0

IUNE=XJUNE-1. 0

HAXN=XHAXN +l . 0

HAXE =XHAXE+l. 0

c .. Step 2 . Set Search Parameters=== = = == = =

c .. Circle Radii are in KJ.J

RADHIN=lO. 0

RADHAX= lO. 0

RADINC = l. 0

C* select probability threshold

THRESH=0.005

c .. set minimum circle size

POPMIN = l OO . O

c .. set minimum cancer count size

CANN I N=2. 0

C* ivri te search parameters ou t

WRITE(6 , 76541) RADHIN,RADMAX,RADINC, PO PMIN

76541 FORMAT('+r.Jinimum Circ le radius is',Fl0.3,' lkm'/

x '*Maximum Circ l e radius is', FlO. 3, ' 1km'1

X

X

'"'Circ le i ncrement set to', FlO. 3, ' 1 km' I

'•Minimum POPULATION size is' 'FlO. 0)

WRITE(6, 78234) THRESH

7823 4 FORMAT(• .. Significance THRESHOLD set at', Fl2. 6)

c• other global inits

TOTCAL=O

TOTDAT= O

TOTNCS = O

TOTNHY =O

C* conve.rt all populat i on counts into expected values

CHIC@ DO ALL GUIDED(64)IF(N.GT.1800)SHARED(N,OVERAT,P) PRIVATE(I)

CDIR@ IVDEP

DO I = l,N

P(I) = P(I) *OVERAT

END DO

C* reset minimum value

POPMIN= POPIU N•OVERAT

C .. SET INITIAL RADIUS for circles

RADIUS = RAOMIN -RADINC

c• compute number of circle sizes to be examined

NTIMES = (RADHAX -RADMIN) /RADINC+ 1. 0

C* open o utpu t file

OPEN (UNIT=9 , FILE=OUTFIL, STATUS= 'UNKNOWN' ,

X FOFU.t = 'FORHATTED')

Generated, Xref

Generated

Generated

Generated

Generated

Generated

Generated

160 Shared-loop and data parallel programming

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246 PR

247 PR

248 PR

249 PR

250 PR P--

251 PR P

252 PR P

253 PR P

254 PR P

255 PR P

256 PR P

257 PR P

258 PR P

259 PR P

260 PR P

1 - -

12

12

12

12

1 23 -

123

123

C* Step 3. Circle Size Loop======= = = = = == ==

C* *********Circle SIZE loop starts here **

DO LOOP=l,NTIHES

C* set circle radius

RADIUS= RADIUS+ RADINC

CC STEP=RADIUS*0.2+0.5001

STEP=RADIUS

IF(STEP. EQ.0) STEP=l

NCALC=O

NDAT=O

NCALS=O

NHY=O

C* Step 4. Grid Search: Northing Loop====

DO 100 IROW = HINN, MAXN, STEP

CY=IROW

C"" Step 5. Grid Search: Easting Loop===

DO 200 !COL = MINE, HAXE, STEP

CX=ICOL

123 C* GET DATA f'IITHIN CIRCLE AT (IROI•/, ICOL)

123 NCALC=NCALC+l

123

123 C* Step 6. Get Data for Circle=========

1 23 OBSP=O .O

123 OBSC=O.O

123 CHIC@ PARALLEL SHARED(N,CX,CY,RADIUS,OBSP,OBSC,X,Y,P,C)

123 CMIC@l PRIVATE(I, DIS, OBSP2X, OBSC2X)

123 OBSP2X = 0

123 OBSC2X = 0

123 CNIC@ DO PARALLEL GUIDED(64)

1 23 CDIR@ IVDEP

1 23v --- --DO 1 = 1, N

DO I=l,N

123v C* cale distance of ED at X(I), Y(I) from gr id point ex , CY

123v DIS= (X(I)-CX)**2 + (Y (l) - CY)**2

123v IF (DIS .GT. 0.0) DIS = DSQRT(OIS)

DIS= (X(I) - CX) **2+ (Y {I) -CY) *""2

IF(DIS.GT.0.0) DIS=DSQRT(DIS)

123v

123v

123v

12 3v

123v

C "" is point inside circle?

IF (DIS .LE. RADIUS) THEN

IF(DIS .LE.RADIUS) THEN

C* yes so accumulate counts

OBSP2X = OBSP2X + P(I)

OBSC2X = OBSC2X + C (I)

OBSP=OBSP+ P (I)

OBSC=OBSC+C(I)

261 PR P 123v ENDIF

262 PR P-- 123v----> END OO

263 CritReg 123 CNIC@ GUARD

264 Cr i tReg 123 OBSC = OBSC + OBSC2X

265 CritRe g 123 OBSP = OBSP + OBSP2X

266 CritReg 1 23 CNIC@ END GUARD

267 PR

268 PR

269

270

271

272

273

274

123

123

12 3

123

123

1 23

123

123

CMIC@ END DO

CNIC@ END PARALLEL

END DO

C* Step 7 . Compute Poisson Probability==

C* SKIP if population count is too small

IF(OBSP. LT.POPMIN)GOTO 200

c• SKIP if too small ta be of int:erest

Generated

Generated

Generated,Xref

Generated,Xref

Generated

Generated

Generated, xref

Oeleted, NoXref !

Generated, Xref

Genera ted, Xref

oeleted, NoXref !

Oeleted, NoXref !

Generated, xref

Deleted , NoXref !

Generated, Xref

Generated, Xref

oeleted, NoXref !

Oeleted, NoXref !

Generated, Xref

Generated

Generated , xref

Generated, Xref

Generated

Generated

Generated

Deleted, NoXref !

275

2 76

277

278

279

2 80

28 1

282

283 p

284 p

285 p

286 p

287 p

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

Multi-tasking code of QAM Version 1 161

123

123

123

123

123

123

123

1 2 3

123

I F(OBSC.LT.CANMIN) GOTO 200

NOAT =NDAT+l

c• CALCULATE SIGNIFICANCE LEVEL

C * * • * * Code Expanded From Routine: POIS

JA = OBSC

AMEAN = OBSP

c• initialise
CJ.IIC@ DO ALL GUIDED(64)IF (JA- 1 GT. 600)SHARED(JA, CONS) PRIVATE(IlX)

1 23 CDIR@ IVDEP

123v DO IlX = 2, JA

123v CONS (IlX) 100/ (IlX - 100)

123v ---->END DO

123

123

123

123

123

123

c• calculate Poison Probability of JA cancers being observed

I F (JA .GT. 1) THEN

CUMPRB(l) = EXP((-AMEAN))

PROB = CUMPRB (1}

IF (JA - l .GE. 10) THEN

123 CDIR@ IVDEP

12 3v DO J = 1, JA - 1

123v DlV(J) = Al·ŒAN*CONS(l +J)

123v ---->END DO

1234 - --- -DO J = 1, JA - 1

1234 CUMPRB(l+J)

1234 ---->END DO

12 3 CDIR@ IVDEP

123v - ----DO J = 1, JA - 1

DlV(J) •cm1PRB(J)

123v PROB PROB + CUMPRB (1 +J)

123v ---->END DO

123 ELSE

123 CDIR@ NEXTSCALAR

1234 DQJ=2,JA

1234 CUHPRB(J) = AMEAN*CONS (J) *CUHPRB(J-1)

1234 PROB = PROB + CUNPRB (J)

1234 - -- -> END DO

123 ENDIF

123 PROB = 1.0 - PROB

1 23 ELSE

123 c• 1 OR 1ess cancers

123 PROB = 1. 0 - EXP ((-Al·ŒAN))

123 ENDIF
123 C***** End o f Code Expanded From Routine: POIS

123

123

123

123

123

123

123

123

12 3

123->

12

12

1 2-- >

CALL POIS (OBSP, OBSC, PROB)

NHY=NHY +l

IF (PROB. GT. THRESH) GOTO 200

C* YES it 's significant so save

NCALS = NCALS+l

C"" Step 7. Save circle info======== = = =

WRI TE (9, 90001) ex, CY, RADIUS. OBSP' OBSC. PROB

90001 FORMAT(3F9.3 ,2F9.3,Fl0.7)

C"" END OF EASTING

200 CONT INUE

C .. END OF NORTHING

100 CONTINUE

c
C End of SEARCH LOOP for given circle radius

c

WRITE (6, 78221) RADIUS, STEP, NCALC, NDAT, NHY, NCALS

Generated

Generated

Auto-inline, Xref 1

Auto-inline, Xref 1

Generated

Generated

Generated

Auto-inline, Xref 1

Auto-inline, xref 1

Auto-inline,Xref 1

Generated

Generated

Auto - inline, Xref 1

Auto-inline, Xref 1

Auto-inline, Xref 1

Auto-inline, Xref 1

Generated

Auto - inline, Xref 1

Auto-inline, Xref 1

Auto-inline, Xref 1

Auto-inline, Xr ef 1

Auto-inline, Xref 1

Auto-inline, Xref 1

Generated

Auto-inline, Xref 1

Auto-inline, Xref 1

Auto-inline, Xref 1

Auto - inline, Xref 1

Generated

Auto-inline, Xref 1

Auto - inline, Xref \

Auto-inline,Xr ef 1

Auto-inline, Xref 1

Auto-inline, Xref 1

Auto-inl ine, Xr ef 1

Auto-inline, xref \

Generated

Auto-inline, Xref 1

Auto - inline, Xref 1

Generated

Deleted, NoXref !

78221 FORMAT(40(1H-)/' *RADIUS=',Fl2.2,'KM with STEP of',I6
1

KW/

X lH , 5X, '*Nurnber of sites generated ', IlO/

X lH , 5X, '*Nurnber of sites examined ', IlO/

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

162 Shared-loop and data parall.el programming

1- -->

X lH , 5X , '*Nurnber of hypotheses tested ', IlO/

X l H , 5X, '*Nurnber of significant circ les', IlO)

C* Eorm global stats

TOTCAL=TOTCAL+NCALC

TOTDAT=TOTDAT+NDAT

TOTNHY=TOTNHY+NHY

TOTNCS=TOTNCS+NCALS

C* g o back and do another circle size

ENDDO

C*******""****************"'""************
C* END OF ALL RUNS* ,.***************""***

C******* **** ** ***,..*********• * ******""***
\'/RITE (6, 887) TOTCAL, TOTDAT, TOTNHY, TOTNCS

887 FORHAT('O********** End of GAN Run**

X lH ,'*Total sites generated is' ,I lO/

X l H , ' *Total sites exarnined ', IlO/

X lH , '*Total hypotheses tested •, 110 /

X lH , '*Total significant circ l es ', IlO)

STOP

END

C* - stan / gam/ gam_B. f DSQRT, N(..,., -) and 1 IF removed, data Jîlter

IHPLICIT NONE

c•

DOUBLEPRECISION DlV(3000)

REAL QQQ

TASK COHHON/ZlFPPl CM/ QQQ (8191)

EQUIVALENCE (QQQ (1) , Dl V)

INTEGER NCASE

PARAHETER (NCASE=l50 000)

REAL OVERAT,XHINE, XHAXN , XHINN, XHAXE,

X OBSP' OBSC' RADIUS' DIS' ex, CY' PROB, RADSQ,

X X (NCASE) , Y (NCASE) , P (NCASE), C (NCASE) ,

X RADINC, RADHAX, RADMIN, POPHIN, CANl.JIN, THRESH,

X YY (NCASE) , X.X (NCASE) , PP (NCASE), CC (NCASE),

X LEFT , RIGHT

CHARACTER *lOO XYOATF, PCDATF,OUTFIL

INTEGER I, LOOP, !COL, IRON, L, Kl, K2, INDEX (NCASE)

INTEGER TOTCAL, TOTDAT, TOTNCS, TOTNHY, STEP, ID, N,

X NINN, HAXN, HINE, HAXE, NTIHES, NCALC, NDAT, NCALS, NHY,

X N2

INTEGER IlX, INC, LIMIT , J, II, LlX, K, I2X, JA, JlX

REAL B, OBSClX, OBSPlX, XHINlX, XMIN2X, XHAXlX, XHAX2X,

X OBSP2X , OBSC2X

DOUBLEPRECISION CUHPRBl3000), CONS{3000), .Z\.HEAN, PROBl

WRITE(6, 78001)

7800 1 FORHAT('*Geographical Analysis Machine GAH/ l (Feb 199 7) ' //)

C* Step 1. Read Data == == == === ==== == ==============

C* set constan ts

C* read ini .fi.le

OPEN {UNIT=l , FILE=' gamfiles dat', FORN = 'FORHATTED',

X STATUS='OLD')

C* read USER DAT."1 file names

C. this fi.le con tains X, y data

READ (1, 10001) XYDATF

C. this file contains Pop at Risk and Count of Real cases

READ(l, 10001) PCDATF

10001 FORHAT(A)

C* get output results fi.le name

Generated

Generated, Xref

Generated, Xref

Gene ra ted, Xref

Generated, Xref

Generated,Xref

Generated , Xref

Generated, Xref

Generated, Xref

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69 P--

70 p

71 p

72 p

73 P-

74

75

76

77

78 P--

79 p

BO P

81 p

82 p

83 p

84 p

85 p

86 p

87 p

88 p

89 p

90 P-

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

1 0 8

109

Multi-tasking code of QAM Version 1 163

1 ----

1 ----

READ(l, 10001) OUTFIL

CLOSE (UNI T = l, STATUS=' KEEP')

C* read X- Y data

WRITE(6, 6707) XYDATF

6707 FORMAT(' *User Inpu t X, Y File is; ',A)

OPEN (UNIT=l, FILE=XYDATF,

999

123

X STATUS = 'OLD',

X FORH = 'FORMATTED')

N= O

DO I = l,NCASE

READ(l,*,END=999) ID ,X.X(I),YY(I)

X (I) = X.X(I)

N= I

END OO

WRITE(6,123) N

FORHAT(5X, ' *EOF at Case Nurnber', IlO)

CLOS ElUNIT=l, STATUS= 'KEEP')

C* No data read?

IF(N.EQ.0) STOP 1

C* sort X values

C***** Code Expanded From Routine: SORT

CALL SORT (X, INOEX,N)

CHIC@ DO ALL GUIDED(64)IF(N.GT.1800)SHARED(N,INDEX) PRIVATE(IlX)

CDIR@ IVDEP

DO IlX = 1, N

INDEX (IlX) = IlX

END OO

IF (N .EQ. 1) GO TO 77055

INC = N/2

77056 CONTINUE

LIHIT = N - INC

CNIC@ DO ALL GUIDED(64)IF(LIHIT.GT .450.AND. (ABS@(INC) .GE.LINIT .OR.

CJ.IIC@l INC.EQ. 0) JSHARED(LINIT, INC,X, INDEX) PRIVATE(IlX,J, B, II)

CDIR@ IVDEP

DO IlX = 1, LIMIT

IF (X{llX) .GT. X{INC+I lX)) THEN

B = X{ IlX)

X(IlX) = X(INC + IlX)

X(INC+ IlX) = B

II = INDEX(IlX)

I NOEX(IlX) = INDEX(INC +IlX)

INDEX(INC+IlX) = II

ENOIF

END DO

INC = INC*3/4

IF (INC .GT. 1) GO TO 77056

L lX = N - 1

77058 CONTINUE

IF {Ll X .LE. 0) GO TO 77055

K = 0

OO IlX = 1, LlX

J = IlX + 1

I F (X(I lX) .LE. X(J)) GO TO 77059

B = X(IlX)

X(IlX) = X(J)

X(J) = B

II = INOEX(I lX)

INOEX(IlX) = INDEX(J)

INDEX(J) = II

K = IlX

77059 CONTINUE

1 ----- END DO

IF (K .LE. 0) GO TO 77055

Generated

Deleted, NoXref !

Generated

Generated

Generated, Xref

Generated, Xref

Gene ra ted, Xref

Generated,Xref

Generated, Xref

Generated, Xref

Generated,Xref

Generated

Generated

Generated

Generated, Xref

Generated, Xref

Generated, Xref

Generated,Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated,Xre f

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated,Xref

Generated, Xref

Generated, Xref

Generated, Xref

164 Shared-loop and data parallel programming

110

111

11 2

113

114

115 P- -

116 p

117 p

118 p

119 p

120 p

12 1 p

122 P----

123

1 24

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145 P- -

14 6 p

147 p

148 p

149 p

150 p

151 p

152 P-

153

154

155

156

157

158 PR

159 PR

160 PR

161 PR

162 PR P--

163 PR P

164 PR P

165 PR P

166 PR P

167 PR P-

168 CritReg

169 CritReg

170 critReg

171 CritReg

172 PR

173 PR

174

175

1 ---

1 - - -

LlX = K - l

GO TO 77058

77055 CONTINUE

C""**** End of Code Expanded From Routine: SORT

c• re-order ta reflect sort on X

Cf.IIC@ DO ALL GUIDED(64)IF(N.GT.900)SHARED(N,INDEX.,XX,X,l.'Y,Y}

CNIC@l PRIVATE(I, ID)

CDIR@ IVDEP

DO I =l ,N

ID=INDEX (I)

X(I) = XX(ID)

Y(I) =YY(ID)

ENDDO

C,,. check sort

DO I =2 ,N

IF(X(I) .LT.X(I -1)) STOP 55

END DO

C* read Population and Observed Cancer data

\'IRITE (6, 6708) PCDATF

6708 FORMAT(. *User Input Data File is;'. A)

OPEN (UNIT= ! , FILE=PCDATF,

199

X STATUS= 'OLD',

X FORM= 'FORHATTED')

N2=0

DO I=l,NCASE

READ(l, * ,END=l99) ID,XX(I), YY(I)

N2=I

END DO

WRITE(6,123) N2

CLOSE (UNIT=l, STATUS = 'KEEP')

C*"No data read?

IF(N2 .EQ.0) STOP 2

c• re-order to refl.ect sort on X

CHIC@ DO ALL GUIDED(64)IF(N.GT. 900)SHARED(N, INDEX,X,.'1(,C, YY, P)

CMIC@l PR I VATE(I, ID)

CDIR@ IVDEP

DO I=l,N

ID= INDEX (I)

C(I)=XX(ID)

P(I)=YY(ID)

END DO

c• Files do not match

IF(N.NE.N2) STOP 3

c• go thru data and produce counts

OBSP=O. 0

OBSC=O. 0

CHIC@ PARALLEL IF (N.GT.l200)SHARED(C,P, N,OBSC,OBSP) PRIVATEfI,

CHIC@l OBSClX, OBSPlX)

OBSClX = 0

OBSPlX = 0

CHIC@ DO PARALLEL GUIDED(64)

CDIR@ IVDEP

DO I = 1 , N

OBSClX OBSClX + ABS@ (C (!))

OBSPlX = OBSPlX + P (I)

END OO

CHIC@ GUARD

OBSP = OBSP + OBSPlX

OBSC = OBSC + OBSClX

CNIC@ END GUARD

CHIC@ END DO

CHIC@ END PARALLEL

DO I = l,N

OBSC = OBSC+ABS (C (I))

Generated , Xref

Generated, Xref

Generated, Xref

Generated

Generated

Generated

Generated

Gener ated

Generated

Generated

Generated

Generated

Generated, Xref

Generated, xref

Generated

Generated

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated

Generated, Xref

Generated , Xref

Generated

Generated

Generated

Deleted, NoXref !

Deleted, NoXref !

176

177

178

179

180

181

182

183

184

185

186

187

188

1 89

190

191

192

193 PR

194 PR

195

196

197

198

199

200

2 01 PR

202 PR

203 PR

204 PR

205 PR

206 PR

207 PR P--

208 PR P

209 PR P

210 PR P

2 11 PR P

212 PR P

213 PR P

2 14 PR P- -

215 Cr i tReg

216 CritReg

217 Cr i tReg

218 CritReg

219 CritReg

220 CritReg

221 PR

222 PR

223

224

225

226

227

228

2 29

23 0

231

232

233

234

235

236

237

238

239

240

241

Multi-tasking code of QAM Version 1 165

OBS P= OBSP+P(I)

END DO

WRITE(6, 8) N,OBSP,OBSC

FORMAT(

X *Nurnber of input data records; ', IB/

X • *Total population at risk: ',Fl0.0 /

X ' *Total Cases ',Fl0.0)

IF(OBSP. EQ.0.0.0R.OBSC.EQ.0 O)STOP 3

OVERAT = OBSC/OBSP

c• Find Nin and Max X, Y values ta defîne search region

XMINE = 999999999. 0

XNINN=999999999. 0

XMAXE =O 0

XMAXN=O. 0

c• data are in 1 Jan uni ts

CHIC@ PARALLEL IF(N.GT.900)SHARED(X, Y,N,Xl>IINE,Xl-IINN,Xl>IAXE,

CNIC@l XMAXN) PRIVATE(I, Xl-IINlX, XJ.IIN2X, Xl>IAX.lX, XJ.1AX2X)

DO I=l,N

XHINE=AHINl (XMINE, X (I))

XMINN=AMINl (XM INN , Y (I))

XMAXE = AJ1AX1 (XMAXE, X (I))

XMAXN = AJ·tAXl (XMAXN, Y (I))

ENDDO

c• data are in 1 Jan units

XMINlX

XMIN2X

XMAXlX

XMINE

XMINN

Xl1AXE

XMAX2X XMAXN

CNIC@ DO PARALLEL GUIDED (64)

CDIR@ IVDEP

DO I = 1, N

Xl-UNlX AflINl(XHINlX,X(I))

XMIN2X AflINl (XMIN2X, Y (I))

Xl1AX1X AJ1AXl(Xl·lAXlX,X(I))

X11AX2X AflAXl (XMAX2X, Y (I))

END DO

CNIC@ GUARD

XMAXN Af1AX1 (XMAXN, Xl1AX2X)

XNAXE AMAXl (Xl•lAXE, Xl·1AX1X)

Xl-UNN AflINl (Xt1INN, XIHN2X)

DUNE AMINl (XI-UNE, XMINlX)

CNIC@ END GUARD

CNIC@ END DO

CHIC@ END PARALLEL

WRITE (6, 71 23) OVERAT, XHINE, XMA.X:E, XMINN, Xt·lAXN

7123 FORMAT(

X ' *Global Incidence Rate per Population at Ri sk is

X ,Fl 5.9 /

x • *Minimum Easting is' , Fl2 . 1,' Maximum is', Fl 2 .1 /

X ' *Minimum Northing is', F12 .1, ' Maximum is', F12 .1)

MINN = XMINN - 1. 0

MINE= Xl-tINE- 1. 0

MAXN = XMAXN+l. 0

l1AXE=X11AXE+l. 0

Deleted, NoXref !

Deleted, NoXref !

Generated

Generated

Deleted, NoXref !

Deleted, Noxref !

Deleted, NoXref !

Deleted, NoXref !

Deleted, NoXref !

Deleted, NoXref !

Generated

Generated,Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated

Generated

Generated, xref

Generated,Xref

Generated, Xref

Genera ted , Xref

Generated, Xref

Generated, Xref

Generated

Generated, xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated

Generated

Generated

Generated

C* Step 2. Set Search Parameters=========== == = === == =========

C* Circle Radii are in KN

RADMIN = lO. 0

RADMAX= lO. 0

RADINC=l. 0

C* select probability threshold

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266 P--

267 p

268 p

269 p

270 P -

271

272

273

274

275

276

277

278

279

28 0

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

166 Shared-loop and data parallel programming

THRESH=O. 005

C* set minimum circle size

POPHIN=lOO. 0

C* set minimum cancer count size

CANlHN=2. 0

C* '"rite search parameters out

t·lRITE (6, 76541) RADMIN, RADMAX, RADINC, POPHIN

7654 1 FORMAT{' *Minimum Circ le radius is', FlO. 3, • 1)an• /

X

X

X

'*Haximum Circ le r adius is •, FlO. 3, ' 1 km'/

'*Circ le increment set to' , FlO. 3, ' 1 km• /

'*Hinimurn POPULATION size is' , FlO. 0)

WRITE (6, 78234) THRESH

78234 FORMAT (' *Significance THRESHOLD set at' , F12 . 6)

C* other global ini ts

TOTCAL=O

TOTDAT=O

TOTNCS=O

TOTNHY=O

C* convert a ll population counts into expected values

CNIC@ DO ALL GUIDED(64)IF(N. GT.1800)SHARED(N, OVERAT, P)PRIVATE(I)

CDIR@ IVDEP

DO I=l,N

P (I) = P (I) *OVERAT

ENDDO

C* reset minimum value

POPHIN= POPM I N*OVERAT

C* SET INITIAL RADIUS for circles

RADIUS=RADMIN-RAOINC

C* compute number of circle sizes to be examined

NTIMES= (RADMAX-RADNIN) / RADINC+l. 0

C* open o utput file

OPEN (UNIT=9, FILE=OUTFI L, STATUS = 'ONKNOWN',

X FORN= 'FOR.MATTEO')

Generated

Generated

C* Step 3. Circle Size Loop===== === =========================

C* ******* Circle SIZE loop starts here ******* .. ****** .. *** ..

1 ----- DO LOOP=l,NTIHES

12

12

12

12

12v

12v

1 2v

12v

C* set circle radius

RADIUS= RADIUS+ RADINC

RADSQ = RADIUS *RADIUS

CC STEP=RADIUS .. 0.2+0.5001

STEP = RADIUS

IF(STEP. EQ.0) STEP=l

NCALC=O

NDAT=O

NCALS=O

NHY=O

C* Step 4. Grid Search: Northing Loop========= = =============

DO 100 IROW = J.IINN, l1AXN, STEP

CY = IROW

L=O

DO I = l,N

DIS= (Y (I) -CY) **2

IF(DIS LE.RADSQ) TH EN

L=L+l

308

309

310

311

3 12

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

33 1 PR

332 PR

333 PR

12v

12v

12v

12v

12v

12v

1 2

12

12

1 23 -

123

123

123

123

123

123

123

123

123

123

123

123

123

123

123

334 PR 1 23

335 PR P-- 123

336 PR P 123

337 PR P 123v -

338

339 PR P 123v

340 PR P 123v

341

342 PR P 123v

343 PR P 123v

344

345 PR P 1 23v

346 PR P 123v

347 PR P 123v

348

349

350 PR P 123v

351 PR P-- 123v

352 CritReg 123

353 CritReg 123

354 CritReg 123

355 CritReg 123

356 PR 123

357 PR 123

358

359 1 23

360

361

362

363

364

365

366

367

368

369

37 0

371

372

373 P--

123

123

1 23

123

123

123

123

123

123

123

123

123

123

12:J

Multi-tasking code of QAM Version 1 167

YY(L) = DIS

XX(L) =X(I)

PP(L) =P(I)

CC (L) =C (I)

ENDIF

END DO

I F (L.EQ O)GOTO 100

C* Step 5. Grid Search: Basting Loop======== == == == === == =====

DO 200 ICOL = MINE, HAXE, STEP

CX = ICOL

C* GET DATA r·IITHIN CIRCLE AT (IRDroJ, ICOL)

NCALC = NCALC + 1

C* establish search region

LEFT=CX-RAOIUS

RIGHT=CX+RADIUS

CALL FIND(XX,L,LEFT,Kl,1)

CALL FIND(X.X,L,RIGHT,K2,2)

C* Step 6. Get Data for Circle= ============ = ===== ===========

OBSP=O.O

OBSC=0.0

12 3 Cl>JIC@ PARALLEL IF(K2-Kl+l.GT. 720)SHARED(K2,Kl,CX,RADSQ,OBSP

CMIC@l , OBSC, X.X, YY, PP, CC) PRIVATE(I, DIS, OBSP2X, OBS C2X)

OBS P2X = 0

OBSC2X = 0

CNIC@ DO PARALLEL GUIDED(64)

CDIR@ IVDEP

DO I = 1, K2 - Kl + 1

DO I=Kl,K2

C* cale distance of ED at X(I), l'(I) from grid point CX,CY

DIS= (X.X(Kl + I-1) - CX)**2 + YY(Kl+I-1)

DIS = (X.X (I) - CX) +*2+YY (Il

C* is point inside c i rcle?

IF (DIS .LE. RADSQ) THEN

IF (DIS. LE. RADSQ) THEN

C* yes so accumulate counts

OBSP2X = 08SP2X + PP(Kl+I-1)

OBSC2X = 08SC2X + CC(Kl+I- 1)

OBSP=OBSP+PP (I)

OBSC=OBSC+CC (I)

ENDI F

END DO

CHIC@ GUARD

OBSC = OBSC + OBSC2X

OBSP = OBSP + OBSP2X

CNIC@ END GUARD

CNIC@ END DO

CNIC@ END PARALLEL

END DO

et Step 6. Compute Poisson Probability====== == == == ===== =====

C* SKIP if population count is too small

IF (OBSP. LT. POPHIN) GOTO 200

C* SKIP if too small to be of interest

IF(OBSC.LT.CANHIN) GOTO 200

NDAT = NDAT + 1

C* CALCULATE SIGNIFICANCE LEVEL

C***** code Expanded From Routine: POIS

JA = OBSC

AMEAN = OBS P

C* initialise

CHIC@ DO ALL GUIDED(64) IF (JA-1.GT. 600) SHARED (JA, CONS) PRIVATE (I2X)

Generated

Generated

Generated, Xref

Generated,Xref

Generated

Generated

Generated,Xref

Deleted, NoXref !

Generated,Xref

Deleted, NoXref !

Generated,xref

Deleted , NoXref !

Generated, Xref

Generated, Xref

Deleted, NoXref !

Deleted, NoXref !

Generated,Xref

Generated

Generated, Xref

Generated, Xref

Generated

Generated

Generated

Deleted, NoXref !

Generated

Generated

Auto-inline, Xref 1

Auto-inline, Xref 1

Generated

Generated 1

374 p

375 p

376 p

377 P-

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

168 Sliared- loop and data parallel programming

123

123v -

123v

1 23v

123

123

123

123

123

123

123v

123v

123v

1234

1234

1234

123

123v

123v

123v

123

123

12 34

1234

1234

1234

123

123

123

123

123

123

123

1 2 3

123

1 23

123

123

123

123

123

123

123

123

1 2

12

12

1

CDIR@ IVDEP

DO I2X 2, JA

CONS(I2X) 1DO/(I2X - 100)

END DO

C* calcula te Poison Probabili ty of JA cancers being observed

IF (JA .GT. 1) THEN

cmtPRB (1) = EXP ((- AHEAN) l

PROBlX = Ctn-lPRB (1)

IF (JA - 1 .GE. 10) THEN

CDIR@ IVDEP

DO JlX = 1, JA - 1

DlV(JlX) = AMEAN*CONS(l+JlX)

END DO

DO J l X = 1, JA - 1

CUMPRB(l+JlX) = DlV(JlX) *CUl1PRB(JlX)

END DO

CDIR@ IVDEP

DO JlX

PROBlX

END DO

ELSE

CDIR@ NEXTSCALAR

1, JA - l

PROBlX + CUNPRB(l+JlX)

DO JlX = 2, JA

cmtPRB(JlX) = AHEAN*CONS (JlX) "CUMPRB(J l X-1)

PROBlX = PROBlX + CUHPRB (JlX)

END DO

END IF

PROBlX = 1. 0 - PROBlX

ELS E

C* 1 OR l ess cancers

PROBl X = 1 .0 - EXP((- AMEAN))

END IF

PROB = PROBlX

C***** End of Code Expanded From Routine: PO I S

CALL POIS (OBSP, OBSC, PROB)

NHY = NHY+l

IF(PROB.GT.THRESH)GOTO 200

C* YES it's signifi.cant so save

NCALS=NCALS+l

Generated 1

Auto-inline, Xref 1

Auto-inline, Xref 1

Auto - inline, Xref 1

Generated

Auto - inline, Xref 1

Auto - inline, xref 1

Auto - inline, Xref 1

Auto-inline, Xref 1

Generated

Auto-inline, Xref 1

Auto-inline, Xref 1

Auto - inline, Xref 1

Auto - inline, Xref 1

Auto - inline , Xr ef 1

Auto - inline, Xref 1

Generated 1

Auto - inline, Xre f [

Auto-inline, Xref 1

Auto - inline, Xr ef 1

Auto-inline, Xref 1

Generated 1

Auto-inline, Xref 1

Auto-in l i n e, Xref 1

Auto-inline, Xref 1

Auto- inline, xref 1

Auto-inline, Xref 1

Auto - inline, Xre f 1

Auto- i nline, Xref 1

Generated

Auto-inline , Xr e f 1

Auto-inl i ne, Xref 1

Auto-inline, Xre f l
Generated

Deleted, NoXref !

C* Step 7. Save circle info=== =========== = ====== ===== =======

WRITE (9, 90001) ex, CY. RADIUS, OBSP, OBSC. PROB

90001 FORMAT (3F9. 3, 2F9. 3, FlO. 7)

C* END OF EASTING

200 CONTI NUE

C* END OF NORTHING

100 CONTINUE

c
C ************ End of SEARCH LOOP for given circle radius *

c

V/RITE (6, 78221) RADIUS, STEP, NCALC, NDAT, NHY, NCALS

7822 1 FORHAT(40(1H-) I' *RADIUS=' ,F12.2, 'KM with STEP of' ,I6 • KH'I

X lH , SX, '*Nurnber of sites generated •, IlOI

X lH , SX, '*Nurnber of sites exarnined •, IlOI

X lH , SX, '*Nurnber of hypotheses tested •, IlOI

X lH , SX, '*Nurnber of significant c i rc l es', I lO)

C* form global stats

TOTCAL= TOTCAL+NCALC

TOTDAT = TOTDAT+NDAT

TOTNHY=TOTNHY+NHY

TOTNCS=TOTNCS + NCALS

C* go back and do another circle size

M ulti-tasking code of GAM Versi on 8 169

440

44 1

442

443

444

445

446

447

448

449

450

451

452

453

1 - ----- - > END DO

C** ** ** *** **** ****

C* END OF ALL RUNS**

C**********"'*"'"'*"'"'*******"'***""*******"'*******"'****'"*"'******"'

WRITE(6, 887) TOTCAL,TOTDAT, TOTNHY, TOTNCS

887 FORMAT('0********** End of GAM Run ******"***""*""•' I

X lH , '"Total sites generated is', IlO I

X lH , '*Total sites examined ', IlO /

X lH , '*Total hypoth eses tested ', IlO /

X lH , •"Tota l significant circles ', IlO)

STOP

END

Appendix 6.2: multi-tasking code of GAM Version 8
1 c• -stanlgam/gam_B.f DSQRT, N(**, -) and 1 IF removed, data filter

IMPLICIT NONE Generated

DOUBLEPRECISION DlV(3000)

REAL QQQ

TASK cm™ON / ZlFPPl cm/ QQQ(8191)

EQUIVALENCE (QQQ(l) ,DlV)

INTEGER NCASE

PARAMETER (NCASE=lSO 000)

REAL OVERAT, XMINE , XMAXN,XMINN, XMAXE,

10 X OBSP,OBSC,RADIUS,DIS,CX,CY,PROB,RADSQ,

11 X X (NCAS E) , Y (NCASE) , P (NCASE) , C (NCASE) ,

12 X RAD I NC, RADMAX, RADMIN, POPMIN, CANNIN, THRESH,

13 X YY(NCASE),XX(NCASE),PP(NCASE),CC(NCASE),

14 X LEFT, RIGHT

15

16
17 CHARACTER* lOO XYDATF, PCDATF, OUTFIL

18 INTEGER I,LOOP,ICOL,IROW,L,Kl,K2,INDEX(NCASE)

19 I NTEGER TOTCAL, TOTDAT, TOTNCS, TOTNHY, STEP, ID, N,

2 0 X MINN, MAXN, MINE, HAXE, NTI MES , NCALC, NDAT, NCALS , NHY,

2 1 X N2

22 C*
23 INTEGER IlX, INC, LI MIT, J, II, LlX, K, I 2X, JA, J l X
24 REAL B, OBSClX, OBSP l X, XlUNlX, XNIN2X, XMAXlX, XHAX2X,08SP2X,08

25 .SC2X Generated,Xref
26 DOUBLEPRECISION CUMPRB(3000), CONS(3000), AHEAN, PROBl

27 WRI TE(6, 78001)
28 78001 FORMAT(' •Geographical Analysis Machine GAM/1 (Feb 1997) '11)

29 C* Step 1. Read Data==== == = = = = = ======== == === = ====

30 c• set cons tants

31
32 c• read i ni . file
33 OPEN (UNIT = l,FILE= 'gamfiles dat' ,FORM='FORMATTED' '

34 X STATUS='OLD')

35
36 c• read USER DATA file

37 C. this file contains X, Y data

38 READ(l, 10001) XYDATF
39 C. this file contains Pop at Risk and Count of Real Cases

40 READ(l, 10001) PCDATF

41 10001 FORMAT(A)

42 c• get output results file name

43 READ(l, 10001) OUTFIL

44

45

46

CLOSE (UNIT=l, STATUS = 'KEEP')

47 c• read X- Y data

48 WRITE(6, 6707) XYDATF
49 6707 FORMAT('*User Input X,Y File is;',A)

50 OPEN (UNI T=l , FILE =XYDATF,

51

52

53

X STATUS = 'OLD',

X FORH = ' FOR.MATTEO')

54 N= O

55 1 --- DO I =l,NCASE

Genera ted, Xref

Generated, Xref

Generated, Xref

Generated, xref

Generated, Xref

Generated, Xref

Generated, Xref

170 Shared-loop and data parallel programming

56 1

57

READ (l, * ,END= 999) ID,XX(I),YY(I)

X(I) =XX(I)

58 N=I
59 1 --> ENDOO

60 999 WRITE(6, 123) N

61 123 FORHAT(SX, ''°'EOF at Case Number' ,I l O)

62 CLOSE(UNIT=l,STATUS='KEEP')

63 C* No data read?

64 IF(N.EQ.0) STOP 1

65 C* sort X values

66 C* * * * • Code Expanded Fr om Routine: SORT

67 CALL SORT (X, INDEX, N)

68
69 P- - CMIC@ DO ALL GUIDED(64) IF (N .GT. 1 800) SHARED(N, INDEX) PRIVATE(IlX)

70 P CDIR@ IVDEP

71 P v ---- DO IlX = 1 , N

72 P V INDEX (IlX) = IlX

73 P V ----> END DO

74 IF (N .EQ. 1) GO TO 77055

75 INC = N/2

7 6 77056 CONTINUE

77 LIMIT = N - INC

78 P -- CM I C@ OO ALL GUIDED(64) IF (LIMIT. GT .450 .AND. (ABS@(INC) .GE .LIMIT .OR.

79 P CMIC@l INC.EQ.0)) SHARED(LIMIT, INC, X, INDEX) PRIVATE(I lX, J, B, II)

80 P CDIR@ IVDEP

81 P v -- - DO IlX = 1 , LIMIT

82 P v IF (X(I l X) .GT. X(INC+ IlX)) THEN

83 P V

84 P V

85 P V

86 P V

87 P V

88 P V

89 P V

B = X(IlX)

X(IlX) = X(INC+IlX)

X (INC+IlX) = B

II = INDEX (IlX)

INDEX(IlX) = INDEX(INC+IlX)

INDEX(INC+IlX) = II

ENDI F

90 P-- v ------- :> END DO

91 I NC = INC*3/ 4

92 IF (INC . GT. 1) GO TO 77056

93 LlX = N - 1

94 77058 CONTINUE

95 IF (LlX .LE. 0) GO TO 77055

96 K = 0

97 1 -- - 00 IlX = 1, L l X

98 l J = IlX + 1

99 1 IF (X(IlX) .LE. X(J)) GO TO 77059

100 1

101 1

1 02

103
104 1

105 1

106 1

B = X(IlX)

X(IlX) = X(J)

X(J) = B

II = INDEX(IlX)

INDEX (IlX) = INDEX (J)

INDEX (J) = II

K = IlX

107 177059 CONTINUE

108 1 - -:> END DO

109 IF (K . LE . 0) GO TO 77055

110 LlX = K - 1

111 GO TC 77058

11 2 77055 CONTINUE

113 C***** End of Code Expanded From Routine: SORT

114 C* re - order ta reflect sort on x
115 P -- CMIC@ OO ALL GUIDED(64) IF (N .GT. 900) SHARED(N, INDEX, XX, X, YY, Y)

116 P CMIC@l PRIVATE(I , ID)

117 P CDIR@ IVDEP

118 P v - OO I=l,N

119 P V ID=INDEX(I)

120 P V X(I) =XX(ID)

121 p V Y(I) = YY(ID)

122 P v - ENDDO

123 C* check sort

124 v DO I=2,N

12 5 V IF(X(I) .LT . X(I-1)) STOP 55

126 v ENDDO

127

128 C* read Population a nd Observed Cancer data

129 WRITE(G,6708) PCDATF

130 6708 FORMAT(' *User Input Data File is;, ,A)

13 1 OP EN (UNIT = ! , FILE=PCDATF,

Generated \

Deleted, NoXref !

Gen erated

Generated

Generated, Xref

Generated, Xref

Ge n erated , Xref

Generated, Xref

Ge n erated , Xref

Generated, Xre f

Generated, Xref

Generated

Generated

Gen erated

Gen erated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Gen e rated, Xref

Generated , Xref

Ge n erated , Xref

Generated, Xref

Generated , Xref

Generated, Xref

Generated, Xref

Generated, xref

Generated, Xref

Gen erated, Xref

Gener ated, Xref

Generated, xref

Generated, Xref

Generated, Xref

Genera t ed, Xref

Gen erated, Xref

Generated, Xref

Generated , Xref

Generated, Xref

Generated, Xref

Generated, Xref

Gen erated,Xr ef

Generated, Xref

Generated, xref

Generated, Xref

Generated

Generated

Generated

Generated

Multi-tasking code of QAM V ersion 8 171

132
133
134

X STATUS== ' OLD ',

X FORJ.l = 'FORHATTED')

135 N2=0

136 1 - - DO I= l,NCASE
137 1 READ(l,*,END=l99) ID,XX(I),YY(I)

138 1 N2 =I

139 1 - - ENDDO

140 199 WRITE(6, 123) N2

141 CLOSE (UN I T = l, STATUS=' KEEP' l

14 2 C*No data read?

143 IF(N2. EQ . 0) STOP 2

144 c• re-order to reflect sort on X
145 P - - CMIC@ OO ALL GUIDED(64) I F (N .GT. 900) SHARED(N, INDEX, XX, C, YY, P)

146 P CHIC@! PRIVATE(I, ID)

147 P CDIR@ IVDEP

148 P v - DO I=l,N

149 P v ID = INDEX (I)

150 P v C(I)=XX(ID)

151Pv P(I)=yY(I D)

152 PV - ENDDO

153 C* Files do not match

154 IFjN.NE . N2) STOP 3

155 c• g o thru data and produce counts

156 OBSP = O . 0

157 OBSC=O. O
1 58PR _ CHIC@ PAR'U.LEL I F (N .GT. 1 2 00) SHARED(C , P, N, OBSC, OBSP) PRIVATE(l,

1 59PR CMIC@l OBSC l X, OBSPlX)

160PR OBSClX = 0

1 61 PR OBSPlX = 0

16 2 PR P- - CH I C@ DO PARALLEL GUIDED (64)

1 6 3 PR P CDIR@ IVDEP

164PR P v- DO I = 1, N
165PR p v OBSClX = OBSC l X + ABS@(C(I))

166PR P v OBSP l X = OBSPlX + P (I)

167PR Pv -ENDOO

168CritReg CMIC@ GUARD

169CritReg OBS P = OBSP + OBSPlX

l 70CritReg OBSC = OBSC + OBSClX

171CritReg CJ.IIC@ END GUARD

172PR CMJC@ ENDDO

173PRegion- CMJC@ END PARALLEL

174 DO I = l,N

17 5 OBSC=OBSC+ABS(C(I))

176 OBSP = OBSP+P(I)

177 ENDDO

178 WRITE (6, 8) N, OBSP, OBSC

179

180

8 FORJ.IAT(
*Nwnber of input data records: ', I8 /

181 x ' *Tota l population at risk: ',FlO.O/

18 2 X' *Total Cases ',Fl0.0)

183 IF(OBSP . EQ.0.0.0R.OBSC EQ.0.0)STOP 3

184 OVERAT= OBSC/OBSP

185
186 c• Find Min and Max X, Y values to defi.ne search region

18 7 XHINE =9 99999999. 0

188 XHINN=999999999 . 0

189 XHAXE = O.O

190

191

XHAXN =O. 0

192 c• data are in 1 km unit .;
193PR _ CHIC@ PAR.l\.LLEL IF (N .GT. 900) SHARED(X, Y, N, XHINE, XM I NN, XHAXE,

194PR CM J C@l XJ.Ll\XN) PRIVATE(I, XHIN l X, XNIN2X, XMAX lX , Xl·tzu.;:2X)

195 DO I=l,N

196 XHINE=AMINl(XHINE,X(I))

197 XNINN = AHINl(XHINN,Y(I))

198 X:HAXE=AMAX l (XHAXE , X(I))

199 Xl·lAXN=AHAXl(Xl•lAXN, Y(I))

2 00 ENDDO

2 0 1PR

202PR C* data are in 1 km units

203PR XlHNlX XHINE

204PR XlHN2X XHINN

205PR Xl·lAXlX Xl·IAXE

206PR Xl·IAX2X XH .. l\.XN

20 7PR P-- CHIC@ DO PARALLEL GUIDE0(64)

Generated

Generated

Generated

Generated

Generated

Generated, xref

Generated, Xref

Genera ted

Generated

Generated, Xref

Generated,Xref

Genera ted , Xref

Genera t ed, Xr ef

Generated

Generated,Xref

Generated, Xref

Generated

Generated

Generated

Deleted, NoXref !

Deleted, NoXref !

Dele ted , NoXref !

Deleted, NoXref !

Generated

Generated

Deleted, NoXref !

Deleted , NoXref !

Deleted, NoXref !

Deleted, NoXref !

Deleted, NoXref !

Deleted, NoXref !

Generated

Generated , Xref

Generated, Xref

Generated, Xref

Generated,Xref

Generated

172 Shared-loop and data parallel programming

208PR P CDIR@ IVDEP

209PR P v-DO I = l , N

210PR P V

2 11PR P v

2 1 2PR P v

213PR P v

XMINlX

XMIN2X

XHAXlX

XHAX2X

214PR P v - ENDDO

2 15CritReg CMIC@ GUARD

MUN! (XMINlX, X (I))

A11I N1 (XM IN2X, Y (1))

AHAXl(X:MAXlX,X(I))

AHAXl (XMAX2X, Y(I))

2 1 6CritReg XMAXN

21 7CritReg XHAXE

218CritReg XHINN

219CritReg }{N I NE

AMAXl (XHAXN, XMAX2X)

AMAX l {XMAXE, XMAX l X)

MUN! (XMINN, XN I N2X)

AMIN! (Xl1INE , XJ.I I NlX)

220CritReg CMIC@ END GUARD

221PR CMIC@ ENDDO

222 PR- CMIC@ END PARALLEL

223

224

225

226

22 7

228

229

230

231
232

233

234

WRITE (6, 7123) OVERAT, XMINE, XMA.XE, Xl1INN , Xl•1AXN

7123 FORMAT (

X ' *Globa l I ncidence Rate per Population at Risk is
, FlS. 91

X' *Minimum Easting is' ,F12.1,' Maximum is' ,F12.l/

X' *Minimum Northing is', F l 2 .1, ' Maximum is', Fl2 .1)
MINN=XMINN-1. 0

MINE = XJUNE - 1. 0

HAXN=Xl·lAXN+l 0

MAXE = X1'1AXE+ l. 0

235 C* Step 2 . Set Search Pararneters== ==== == == ===== ====== = ==== = =
236 C* Circle Radii are in KH

237

238

239

240

RADHIN=l O. 0

RADMAX=lO. 0

RADINC=l . 0

241 C* select p robab i li t y threshold

242 THRESH =O 005

243

244 C* set mi nimum ci r c le size

245 POPMI N= l OO . 0

246 C* set minimum cancer count size

247 CA.NMIN = 2. 0

248

249 C* write search parameters out

250 WRITE(6,76541) RADHIN,RADMAX,RADINC,POPMIN

25 1 7 6541 FORHAT('*Minimum Circle radius is •, F l O 3,' 1 km'/
252 X '*Maximum Circle radius is' ,Fl0.3,' 1 km' /

253 X '*Circle increment set te', FlO. 3, ' 1 km'/

254 X '*Minimum POPULATION size is •, FlO. 0)
255

256 WRITE(6, 78 234) THRESH

257 78234 FORMAT (' *Signific ance THRESHOLD set at ',Fl2.6)
258

259 C* other global inits

2 6 0 TOTCAL = O

261 TOTDAT= O

262 TOTNCS=O

263 TOTNHY=O

264

265 C* convert all population counts into expected values

266 P- - c rue@ DO ALL GUIDED(64) IF (N .GT. 1 8 00) SHARED(N, OVERAT , P) PRIVA.TE(!)
2 67 P CDI R@ IVDEP

268 P v- DO I=l,N

269 P v P(I) = P(I) *OVERAT

27 0 Pv - ENDOO

271

272 C* rese t minimum va lue

273 POPMIN=POPMIN*OVERAT

274

275 C* SET INITIAL RADIUS for circles

276 RADIUS=RADMIN -RADINC

277 C* compute number of c ircle sizes to be examined

278 NTIMES = (RADMAX - RADMIN) / RADINC+l. 0

279

280 C* open output file

281 OPEN (UNIT=9, FILE=OUTFIL, STATUS= 'UNKNOWN' ,
282 X FORH = 'FORHATTED')

283 C* Step 3. Ci rc l e Size Loop= = = = == == ====== == == = === == == == === ==

Generated

Generated, Xref

Generated,Xref

Generated,Xref

Generated, Xref

Generated, xref
Generated , Xref

Generated

Generated, xref
Generated, xref
Generated , Xref

Generated, Xref

Generated

Generated
Generated

Generated

Generated

Generated

Multi-tasking code of (JAM Version 8 173

284 C* *********Circle SIZE loop s t arts here

285 1 - - DO LOOP=l,NTIMES

286 lC* set circle radius

287 1 RADI US =RADIUS+RADINC

288 1 RADSQ=RADI US* RADIUS

289 1 CC STEP=RADI US*O. 2+0 . 500 1

290 1 STEP=RADI US

291 1 IF(STEP. EQ .0) STEP= l

292 1

29 3 1

294 1

295 1

296 1

297 1

NCALC= O

NDAT=O

NCALS=O

NHY=O

298 1 C* Step 4. Grid Search : Northing Loop = = ==== === = === = === == = ===

299 1

300 1 2

301 12

302 12

303 12

CY=IROW

L=O

304 12v - -DO I=l,N

DO 100 IROW = HINN, MAXN, STEP

305 12v DIS=(Y(I)-CY)**2

306 12v IF (DIS. LE. RADSQ) THEN

307 12v L=L+ l

308 12v YY(L)=DIS

309 12v XX(L) = X(I)

31 0 12v PP(L) =P(I)

311 12v CC(L)=C(I)

3 1 2 12v ENDIF

313 12v - ENDDO

31 4 12 IF(L .EQ O)GOTO 100

315 12
316 1 2 C* Step 5. Grid Search: Eastin g Loop = == = = == = === = == == = = == = == =

317 123 -- DO 200 !COL = MINE, MAXE, STE P

318 123 CX=ICOL

319 123
320 123 C* GET DATA WITHIN CIRCLE AT (IROW, !COL)

321 123 NCALC=NCALC+l

322 123
323 123 C* establish search region

324 123 LEFT=CX-RAOIUS

325 1 23 RIGHT= CX+RADIUS

326 123 CALL FIND(XX,L, LEFT ,Kl,l)

327 123 CALL F I ND(XX,L,RIGHT,K2,2)
32 8 123 C"' Step 6 . Get Data for Circ le = = == === == = = = === = === ====== = == = =

329 123 OBSP=O . 0

330 1 23 OBSC =O .O
331PR- 123 CHIC@ PARALLEL IF (K2 - Kl + 1 .GT. 720) SHARED(K2, Kl, ex, RADSQ, OBSP

332PR 123 CHIC@l OBSC, XX, YY , PP, CC) PRIVATE(I, DIS, OBSP2X, OBS C2X)

333PR 123 OBSP2X = 0

334PR 123 OBSC2X = 0

335 PR P 123 CHIC@ DO PARALLEL GUI DED(6 4)

336PR P 123 CDIR@ IVDEP

337PR p 1 23v - - -- DO I = 1, K2 ·- Kl + 1

338 DO I =Kl ,K2
339PR p 123v C* cale distance of ED at X(I), Y(I) from grid point CX,CY

340PR p 123v DIS = (XX(Kl +I-1) - CX) **2 + YY(Kl+I-1)

341 DIS= (XX(!) -CX) **2+YY (l)

342PR p 1 23v C* is point inside circle?

343PR P 123v IF (DIS .LE. RADSQ) THEN

344 IF(DIS.LE.RADSQ)THEN

345 PR p 123v C* y es so accumulate counts

346PR p 123v OBSP2X = OBS P2X + PP(Kl +I-1)

347PR p 123v OBSC2X = OBSC2X + CC(Kl+I-1)

348 OBSP=OBSP+PP (l)

349 OBSC =OBSC+CC (I)

350PR P 123v END IF

351PR P-- 1 23v --->END DO

352CritReg 123 CHIC@ GUARD

353CritReg 123

354CritReg 123

OBSC = OBSC + OBSC2X

OBSP = OBSP + OBSP2X

355CritReg 123 CMIC@ END GUARD

356 PR 123 CHIC@ ENDDO

3 57PR- 123 CHIC@ END PARALLEL

358 ENDDO

359 123

Genera ted

Generated

Generated,Xref

Generated, Xref

Generated

Generated

Generated, Xref

Deleted, NoXref !

Generated, Xref

Deleted, NoXre f !

Genera ted, xref

Dele t e d , NoXre f !

Generated, Xre f

Generated, Xref

De l ete d, NoXref !

Deleted, NoXref l

Generated, Xref

Generated

Generated,Xref

Generated , Xr ef

Generated

Generated

Generated

Deleted , NoXref !

174 Shared-loop and data parallel programming

~:~ ~~~ C* Step 7. Compute Poisson Probabi lity= == == ==== = = == == ==== = ==

362 123 C* SKIP if population count is toc small

363 123 IF(OBSP. LT.POPMIN)GOTO 200

364 12 3 C* SKIP if tao small to be of interest

365 123 IF(OBSC. LT .CANHIN) GOTO 200

366 123 NDAT=NOAT + l

367 123 C* CALCULAT E SIGNI FICANCE LEVEL

368 123 C***** Code Expanded From Routine:

369 123

370 123 JA = OBSC

371 123 ANEAN = OBS P

372 1 2 3 C* initialise

POIS

373 P-- 123 CHIC@ DO ALL GUIDED(64)IF(JA-l.GT.600)SHARED(JA,CONS)PRIVATE(I2X)

Generated \

Generated 1
Auto - inl ine, Xref

Auto - in line , Xref

Generated

Generated
1 P 123 CDIR@ I VDEP

374 P 123v -- DO I2X = 2 , JA Auto - inline, Xref I Generated
375 P-- 123v ----> ENDDO p 1 23 v CONS(I2 X) = lDO / (I 2X - l DO) Auto - inline , Xref

3 76 123 C* calculate Poison Probabili ty of J A cancers being observed
377 123 IF (JA .GT. 1) THEN

378 123 cmtPRB(l) = EXP((- Al1EAN))

379 123 PROBlX = Ctn-IPRB (l)

380 1 2 3 IF (JA - 1 .GE. 10) THEN

38 1 1 2 3 CDIR@ IVDEP

382 1 23v - DO JlX = 1 , JA - 1

383 12 3v DlV(JlX) = AHEAN*CONS (l +Jl X)

384 1 23v - ENDDO

385 1234 - DO JlX = 1, JA - 1

386 1234 CUHPRB(l+Jl X) DlV(JlX) *Ctn-IPRB(J l X)

387 1234 - >ENDDO

388 12 3 CDIR@ IVDEP

389 123v - DO JlX = 1, JA - 1

390 123v PROBlX = PROBlX + Ctn-IPRB(l+JlX)

391 1 2 3v- > END OO

392 123 ELSE

393 12 3 CDIR@ NEXTSCALAR

394 1234 DO JlX = 2 , JA

395 1234

396 1234

39 7 1234

398 123

399 123

CUNPRB (JlX) = Al·IEAN*CONS (JlX) *CUHPRB (JlX- 1)

PROBlX = PROBlX + CUMPRB (JlX)

END DO

ENDIF

PROB l X = 1 . 0 - PROBl X

400 123 ELSE

40 1 1 2 3 C* 1 OR l ess cancers

402 1 2 3 PROBlX = 1. 0 - EXP ((-AHEAN))

403 1 23 ENDIF

4 04 12 3 PROB = PROBlX

405 1 23 C***** End of Code Expanded From Routine: POIS

406 CALL POIS (OBS P, OBSC, PROS) Deleted , NoXref !

407 123 NHY = NHY + l

408 123 IF(PROB.GT.THRESH)GOTO 200

4 09 1 23 C* YES it 's significant so save

410 123 NCALS =NCALS+l

411 123

412 123 C* Step 7. Save circle info=== =- --- --
413 1 23 WRITE(9' 90001) ex, CY, RADIUS, OBS~~o~;c~~:o~==== == ===== = ==== =====
414 1 23 9000 1 FORNAT(3F9 . 3,2F9.3,Fl0. 7)

415 12 3 C"' END OF EASTING

416 12 3 -> 200 CONTINUE

417 12

4 1 8 1 2 C* END OF NORTHING

419 12 - - > 1 0 0 CONT I NUE

420 1

421 1 c
:~~ ~ ~ ***•******** End of SEARCH LOOP for given c ircle radius *

424 1

4 25 1 WRITE(6,78221)RADIUS,STEP,NCALC,NDAT,NHY NCALS

: ~~ ~ 78221 FORMAT(40(1H-) / ' *RADIUS=' ,F12 .2, ' KM \•;ith STEP

Xl H , 5X, '*Number of sites gene rated ', Il O/
4 28 1

429 1

43 0 1
431 1

XlH , 5X, ' *Nurnber of

XlH , 5X, '*Number of
sites examined ', I lO /

hypotheses tested •, I l O/

XlH ,5X, '*Numbe r of significant circles ' ,IlO)

43 2 1 C* form g l obal stats

433 1 TOTCAL = TOTCAL +NCALC

434 1 TOTDAT= TOTDAT +NDAT

of',I6 ' KH ' /

Auto-inline , Xref

Generated 1

Auto - inline, Xref

Auto -in l ine, Xref

Auto - inline, Xref

Auto-in l ine, Xref

Generated 1
Auto - i n line, Xref

Auto-inline, Xref

Au to-inline, Xre f

Au to- inlin e, Xre f

Au to - inline, Xref

Auto-in l ine, Xref

Generated 1

Auto-inl ine, Xref

Auto - inline, Xref

Auto - i nline, Xref

Auto-in l ine, Xref

Generated 1

Auto- i nline, Xre f

Auto - inline, Xref

Auto - inline, Xre f

Auto - inline, Xref

Auto- inl ine, Xre f

Auto-inline, xref

Auto-inline, Xref

Generated 1
Auto - inline, Xref

Auto - inline, Xref

Auto-in line, xref

Generated /

Multi-task ing compilation of the spatial interaction model 175

435 1 TOTNHY=TOTNHY + NHY

436 l TOTNCS=TOTNCS+NCALS
437 1 C* go back and do another c ircle s i ze

438 1 - -> ENDDO

43 9
440 C* .. **** ** ** .. * .. **********"'****"' * * * .. *** ***"' ** .. * ... ******** * *****

441 C* END OF ALL RUNS* ***** ** ****•******** .. ************ "' *******

442 C* **** .. ******* * **** .. ******** ******"' **** ***************** * ***

443 WRITE (6, 887) TOTCAL, TOTDAT, TOTNHY, TOTNCS

4 44 887 FORHAT('0* ... ******** End of GAH Run ******* **** *****' /

445 X l H , '*Total sites generated i s', 11 0 /

446 X lH , '*Total sites examined ', Il O/

447 X lH , '*Total hypotheses tested ', Ilü/

448 X l H , '*Total significant c ircles ', IlO)

449
450 STOP

451 END

Appendix 6.3: multi-tasking compilation of the spatial
interaction model

1 0

11
12
13
Generated , Xre f

14
15 1 --
16 l v -

lv

C* si_ l . f Spat i al I nteraction Madel

I HPLICIT NONE

c .. Trans l ated by FPP 6.0 (3.06G26)

REAL smnu
INTEGER N

REAL BETA
PAR..?\..HETER (N=2000, BETA=0 . 25)
REAL T(N,N) ,C(N,N) ,O(N) ,D(N) ,P (N ,N) ,SUN, SS,

X RANF,A(N)

INTEGER I, J

C* generate some random data

REAL DlX , SSlX

SS=RANF ()

DO I = l,N

DO J=l,N

T(I,J) =RANF() *10.0

lv C(I,J) =RANF() •100.0

l v ENDDO

1 - > ENDDO

P--

p V - -

p V

P-v ->

C* cal culate Oj and Oj

CHIC@ DO ALL GU I DED(64) SHARED(O) PRIVATE(I)

CDIR@ IVOEP

DO I = l,N

O (I) =O.O

END DO

17

18

19
20

21
22
2 3
24

25

26
27

28
29PRegion- CHI C@ PARALLEL SHARED(O , T, D) PRIVATE(I, DlX, J)

30PR DO J=l,N

31PR DlX =
32PR P-1 CHIC@ DO PARALLEL GUIDED(64)

33PR 1 CDIR@ IVDEP

34PR lv - DO I = 1, 2000
35PR lv O(I) = O(I) + T(I,J)

36 PR l v DlX = Dl X + T(l ,J)

37PR P-l v END DO

38CritReg 1 CHIC@ GUARD
39CritReg 1 D(J) = O(J) + Dl X

40Cr i tReg 1 CHIC@ END GUARD

41PR CHIC@ END DO

42PR 1 - >

43PRegi on-

44

DO I =l ,N
O(I) =O(I) +T(I,J)

D(J) =D(J) +T(I,J)

ENDDO

CHI C@ END PARALLEL

END DO

C* calculate mode l

Generated , Xref

Generated

Generated

Generated

Generated, Xref

Generated

Generated

Generated , Xr ef

Generated, Xref

Generated, xref

Generated,Xref

Generated

Generated, Xref

Generated

Generated

Geleted, NoXref !

Geleted, NoXref !

Geleted, NoXref !

Generated

Deleted, NoXref !

45
46PReg i on-

47PR

SS =O. 0
CHI C@ PARALLEL SHARED (SS, D, C, A, 0, P, T) PRIVAT E (SUM, I, J, SSlX, Stn-11U) Generated
SSlX = O Generated,Xref

48PR P-
CHIC@ DO PARALLEL CHUNKSIZE (16) Generated

176 Shared- loop and data parallel programming

49PR 1 --

50PR

SlPR

52PR

53PR p 1

54PR l v -

55PR P l v

56PR P lv

57PR 1

58PR

59PR p

60PR p lv -
61PR p lv
62PR p lv
63PR p lv

64PR P 1

65PR P- 1

66CritReg

67CritReg
68CritReg
69PR

70PRegion-

DO I = 1, 2000

DO I =l,N

C* Cale A(!)

CDIR@

SUHlU = 0. 0

IVDEP

DO J = l, 2000

smnu = SUMlU + D(J)*EXP((-0.25*C(I,J)))

END DO

A(I) = 1 0 /SUHlU

Sffi.I=O. 0

DO J= l,N

SUI>I=SUM+D(J) *EXP (-BETA*C{ l,J))

END DO

A(I)=l 0/SUM

C* cale model
CDIR@ IVDEP

DO J = 1, 2000

P(I,J) = A(I)*O(I)*D(J)*EXP((- 0 25*C(I , J)))

SSlX = SS!X + ((P(!,J) - T(I,J))**2)

END DO

DO J=l,N

P{I,J) =A(I) *O (I) *D(J) *EXP(-BETA*C(I,J))

SS=SS+{P(I,J)-T(I,J)) **2

END DO

END DO

CHIC@ GUARD

SS = SS + SSlX

CHIC@ END GUARD

CHIC@ END DO

CMIC@ END PARALLEL

END DO

Sll·l=N

71

72

73

74

75

76

77

123

SS =SS/ (Stn-I*Stn.I)

WRI TE(6 , 123)SS

FORMAT(Fl5 9)

STOP

END

Appendix 6.4: HPF spatial interaction model
Program sim

' * si_l. f Spatial Interaction Hode l

IHPLICIT NONE

INTEGER, parameter: N= lOOO

REAL, parameter BETA= O. 2 5

REAL T(N, N), C(N,N), O(N), D(N), P (N,N), SUMS (N), SS,

REAL SU'HX,A(N)

INTEGER I, J

!HPF$ distribute (BLOCK, *)

! HPF$ distribute (BLOCK)

! * Read in some data

read *,T

read *, c

'* calcula te Di and Dj

O= O. O

D= O.O

O=sum(T, 1)

D=sum(t, 2)

' * calculate model

SS=O. 0

1• Cale A(I)

Stn<IS= O. 0

! HPF$ INDEPENDENT

do i = l,n

T,C

O,Stn·1S,A

A(i)= l .0/sum(d*exp(- beta*c(i,:)))
! * cale model

11 .. 21
enddo

Stfl.1X = N

ss=ss+sum({ (A(I) *O(I) *D*EXP(- BETA*C(I,:)))- &

SS = SS/ (Stfl.1X *Stfl.1X)

Generated, Xref

Deleted, NoXref !

Generated, Xref

Generated

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Deleted, NoXref !

Deleted, NoXref !

Oeleted, NoXref !

Deleted, NoXref !

Deleted, NoXref !

Generated

Generated, Xref

Generated, Xref

Generated, Xref

Generated, Xref

Oeleted, NoXref !

Oeleted, NoXref !

Deleted, NoXref !

Deleted, NoXref !

Generated , Xref

Genera ted

Generated, Xref

Generated

Generated

Generated

Deleted, NoXref !

T(i,:

WRITE (6, 1 23) SS

123 FORHAT(Fl5.9)

STOP

END prograrn sim

HPF spatial. interaction model 177

7 ~arallel programming using
simple message passing

The next two chapters are ·al di "f . . ' essentr rea ng 1 you are interested in a non-
techmcal mtr·oduction to message · M · · · · . passmg. essage passmg 1s the pnnCipal way by
"".hich parallel HPC machines ar~ programmed. At first sight it may appeai· very
difficult, but ~n essence there 1s ai1 underlying simplicity that is wondrous
t~ behold. This chapter üm·oduces the subject by way of easy-to-understand
examples. If you are really serions about either writing portable parallel code or
sg~leezmg the last drop of performance out HPC or making use of workstation
fauns then the next two chapters ai·e what you need to concentr·ate on.

7.1 Introduction

It w?uld appear that the distr·ibuted-memory MIMD machines have 'won' the
ai·clutecture battle at tl1e higl d M · · · . 1 en . essage passmg 1s unportailt because it is tl1e
~l~tural pro~_rammm~ approach for tl1ese machines . It is also tl1e most basic, gen
. ral and flexr~le approach to parallel programming. However, message passing is
mtended mainly for MIMD machines An SIMD J · b b . . · mac 1111e may e etter pro-
gr ammed usmg a data parallel approach Indeed l · l .c . F (HPF ' · , ug1-pe1101mai1Ce ortr·an

)' CaJl ~e regarded ~s a high-level lai1guage generator of message-passing
;~de '~hen lllll on a distI"Ibuted-memory MIMD machine, but witl10ut tl1e flex
bih1!' aJld complexrty tl1at you get when you have to do it ail yourself. This is
fr~cisely t11e case an ass~mbly programmer would make when arguing t!1e case
01 assembly programmmg versus ai1y high-level language. Fortunately dus

analogy 1s a poor one beca · · · ' . . ' . 'use message passmg 1s notl1111g remotely as primeval
as assembly programmmg. The message-passing programming model is prob-
ably tl1e future of HPC in a ·all J ·Id S · · . . par e WOI . o at present It 1s definitely wortl1
wlule leai·mng how to do it.

The ~dvailt~ges of message _pas~ing include an ability to scale to very large
numbers of processors, flexrbihty 111 writing efficient parallel code a means of
future -proofin~ ~rograms, a high degree of portability, and vendor indepen
dence. The prmcipal penalty you pay is tl1e extent of tl1e software changes ai1d
tlle ~ffort needed to detect, enhai1ce and express parallelisation so as to talce
maximum advai1tage of tl1e pot tr" J f di ·b . . . en a o str·1 uted-memory processors. In
practrce, tlus means tl1at you have to rewrite your code, retl1ink tl1e algorithm

Introduction 179

and express it in a form SllÎtable for message passing. This is often non-tr·ivial,
but it need not be too difficult, and it freguently leaves you witl1 a feeling of
euphoria and achievement when it finally works . However, learning how to write
good code for message passing is sometlling tl1at you only do if you have to; or
because of curiosity or as pai·t of a new skills acgllÎsition programme. Put even
more bluntly, if you tllink tliat you cai1 do it well in HPF tl1en do it via tl1at
route , at least iilitially. If tl1e form of pai·allelism is uneven, not obviously data
pai·allel, or tl1ere ai·e few DO loops tl1at cai1 be shared out, tl1en you have (at
present) no choice but to use message passiI1g. Indeed, once over tl1e iilitial
shock it often turns out to be easier tl1ai1 you may at first have tl1ought possible.

Lai1dau ai1d Fink (1993: p. 331) write: 'pai·allel programming becomes more
demai1dü1g as tl1e number of processors ÜKreases, and it may be best to rewrite
a code written for one CPU ratl1er tl1an tr·y to convert it to pai·allel'. Tllis is
sound advice . Sooner or later you may have to bite the buller! Quite simply, your
old cuddly serial code is probably no longer suitable. It is not merely a tr·ai1sla
tion ai1d porting job but an opportmlity for a complete algoritlun retllink. It
should also be added tliat witl1 message passing you no longer have any choice
but to add new lines to at least some of tl1e code, so you might as well talce tllis
opportmlity to check ai1d retl1ü1k tlie algoritluns on wllich it is based. For
instailCe, why not consider tl1e following questions. Is it sufficiently paralleP
Could it be expressed differently? Will tl1e performaiKe scale as tl1e number of
processors increases? Is it offerü1g tl1e right levels of parallel granulai·ity? ls tl1ere
ai1y obvions mechailism for ÎIKreasing tlie size of tl1e parallel tasks as processor
speeds ÜlCrease? Is there a better parallel way of doing it? Is tl1e code of sufficient
importance to you (or otl1ers) to justify tl1e effort to parallelise it? Do you really,
really need tl1e additional speed, or could you get away witl1 leavü1g it rumling
on your workstation for a week or two? Do you expect tl1e program to be run
many rimes? Is the science sufficiently good to justify the allocation of scai·ce
HPC resources to it? Tllis does not mean tl1at message passü1g has to be
performed on ai1 HPC. Indeed, one of tl1e 11ice features is tl1at you can write
message-passing code on your workstation and even use it to create your own
virtual HPC using your local area network and your department's workstations
or PCs at 11ight, when they ai·e idle . So you ai·e by no meaJls locked into ai1d
totally dependent on a world of very expensive HPC hardwai·e. You cai1 prove
your algorit11ms work and even look likely to scale long before you log on to a
parallel HPC.

As you gaü1 experience, you will get better at it. It is ail rather ai1 immense
intellectual challenge of considerable excitement. The hope is that tl1e code you
produce will simultai1eously deliver tl1e pronlise of pai·allel processing ü1 your
application ai·ea, work extr·emely well on current machines and continue to do
well on new ai1d as yet undefined pai·allel hardware of the future tl1at has not yet
been airnounced. It goes without saying tl1at tl1e effort is only justified by your
needs and ability to justify large-scale parallel-processing power. We ai·e not
talking here about a Noddy code that runs in 5 seconds on a toy problem.
Parallel processü1g is ail about tl1e top end of 11igh-performai1ce computing ü1

180 Parallel programming using simple message passing

the context of significant research of major interest. It is when you are on the
edge of what is conveniently possible or just beyond that tl1e real tlu·ills and
spills, tl1e big challenge, kicks in. Any buzz, excitement or entlrnsiasm generated
here is really useful as an aid in tl1e forthcoming message-passing struggle, so let
battle commence!

7 .2 Message passing?

7.2.1 What is it?

Message passing is tl1e main alternative to shared-data programming. In a
message-passing program, processes do not communicate invisibly tlu·ough
shared data; instead, tl1ey send and receive data as explicit messages. It is as
simple as tl1at. Gropp et al. (1994) write, 'The message-passing model posits a
set of processes that have only local memory but are able to communicate by
sending and receiving messages. It is a defining feature of the message-passing
model tl1at data u·ansfer from tl1e local memory of one process to t11e local
memory of another requires operations to be performed by botl1 processors' .

The term 'message' is somewhat misleading, but equally it is hard to imagine
a better word. It also reflects tl1e historical origins of certain types of operating
system now lost in tl1e mists of time. An analogy witl1 postal mail is a good one.
Letters contain a message. Each letter has a destination address and tl1e sender
oft:en includes his or her address on it as well. The postal service '1rnows where to
send it and where (approximately or accurately) it came from. Now move on
to a telephone system. The process is essentially tl1e same, except tl1at tl1e origin
and destination numbers are known and tl1e 'letter' is now an analogue or digital
version of an audio message. Now move on to a disu-ibuted-memory MIMD
computer. The messages are now bursts of digital data sent from one processor
at a given address to another at a given address over an intercoru1ection network.
The processors have to do tllis because in a disu·ibuted-memory machine each
processor has its own local memory. As a reslÙt, t11e global memory space con
sists of M sets of local memory (where Mis tl1e number of processors) . If a
processor wants data stored elsewhere tl1en it needs to lrnow which processor
has it and tl1en ask for it by sending a message to tl1at processor and, after a wait,
receiving it in the form of another message. The u·icky partis that tl1e processor
with the data has to expect to be sent a message and tl1erefore be ready and
waiting to receive these requests. Tllis may sound difficult, but it is actually
quite easy.

Keep telling yourself that the basic idea is very simple. Imagine a number of
processors, each witl1 its own program and local data. If it helps, tl1en each
processor can be viewed as a workstation linked via a network. Data are
exchanged between pairs of processors. To run on such a multi-processor
machine, an algorithm has to be decomposed into a set of data u-ansfers and
blocks of local computation tl1at can be run on each processor in parallel (i.e.
simlÙtaneously). A minor complication is t11at messages sent by one processor to

M essage passing? 181

another can talce different lengt11s of time to be performed, and ail processors
may not work at tl1e same speed or be given identical amounts of work to do.
Computation now becomes a set of processors communicating with messages .

7.2.2 Drawbacks

Message passing is a very powerfi.ù and general met11od of expressing parallelism.
The principal drawback is tl1e diffi.culty of desig1ling message-passing programs
or of altering existing programs for message passing. This requires more work
than is involved in any other form of parallel programming. Indeed, message
passing has been called tl1e 'assembly language' of _parallel con:puting, because
you have to handle explicitly much of tl1e complexity and detail . You also h~ve
to perform fairly major surgery on your code to put it into a message-passmg
form. Suddenly, the seemingly simple and su·aightforward assignment

X=Y

may now involve t11e processor witl1 memory space for X to be stored on it send
ing a message to one (or more) explicitly named processor asking for t11e value
of Y. Tllis forces you to retllink how your algorit11111 works in order to malce
good use of M processors (where Mis typically in t11e range ten to several t11ou
sand) so tl1at data and/or computational tasks can be shared out effic1ently. If
tliat is not enough, you will probably fi.nd eit11er tliat it does not work too well
or tliat performance does not improve witl1 increasing numbers of processors; ~r
even worse on the scale of progranrnling catasu·ophes, tl1e wrong result 1s
obtained and it is not at ail obvions why or what went wrong because the code
may have fulished quite normally. At first sight, message passing looks like a
major backward step into a previous era of computer programmmg . when
debugging was largely a mix of mind experiments, intuition, black magic and
print statements, sometimes tinged witl1 dashes of luck and good forume!
Indeed it is, but t11e effort is wortl1 while because it constimtes an exu·emely
effective programnling metl1odology for ma.king tl1e most of disu-ibute~
memory HPC hardware. Pacheco (1997: p. 7) argues 'if tl1e design process 1s
sufficiently deliberate , it doesn't take an undue effort to design exu·emely
sophisticated programs'. This task is also becoming easier ail t11e time as more
libraries are written for message-passing systems, t11ereby providing useful build-

ing blocks for new applications.

7.2.3 Advantages

According to Gropp et al. (1994), t11e following four advantages more tlun

justify t11e effort.

1 The imiversality of the concept. Message passing fits well on separate proces
sors connected by bot11 fast and slow commmlication net:works. These

182 Parallel programming using simple m essage passing

include PCs, workstations, and vector and parallel supercomputers. It is a
programming paradigm that will stand the test of time.

2 Expressivity. Message passing offers a complete environment in which to
write parallel algorithms. Gropp et al. (1994: p. 8) note that 'some find its
anthropomorphic flavour useful in formulating a parallel algorithm'. It is
well suited to adaptive, self-scheduling algorithms. In many ways , it adds
the cont:rol and flexibility that is missing from data parallel programming,
HPF and other simpler programming paradigms.

3 Debugging is easier. The principal benefit is that message passing malœs
memory referencing more explicit, making it easier to spot erroneous reads
and writes than it is on a shared-memory machine. This is not to say that
debugging is actually easy (or easier) under message passing, but it is easier
to spot some types of common logical error in the code because memory
access is via explicit messages. A few well-placed PRINT statements may
often do the trick if only you can determine where best to put them.

4 Pe1fonnance is the principal advantage. Gropp et al. (1994 : p. 8) write
'Message passing provides a way for the programmer to explicitly associate
specific data witl1 processors and tlrns allow t11e compiler and cache hard
ware to fonction fully' . It provides a means of exploiting highly parallel
disu·ibuted-memory machines very effectively and to obtain linear scaleabil
ity. However, it is still possible to write slow code in message passing, and
much depends on tl1e ski.lis of tl1e parallel algoritl1111 designer and coder.

Ot11er benefits include:

5 It offers a standard approach for implementing parallel applications.
6 It provides hardware and vendor independence and hence portability now

tlrnt tl1ere is an indusu·y standard (MPI and MPI2).
7 It is a useful means of safeguarding and future-proofing the investnient in

algoritl1111ic development because of t11e generality of tl1e approach.
8 The programming tasle rapidly beco1nes easier as you gain expe1'ience. As ever,

getting tl1e first code to work is t11e hardest. Qui.te often, tl1e same basic
su·ucture can be used over and over again in different programs.

9 It is far easier than it loolu, because t11ere are only a small number of sub
routines tl1at you will typically need to use .

10 We managed it, so why not you?

Message passing is t11erefore definitely wortl1 getting to know.

7.3 Message-passing software

7.3.1 Its importance

The idea behind message passing dates from t11e l 970s, but tl1e early systems
were completely vendor- and hardware-specific. It is only since the late 1980s

M essage-passing software 183

t[1at portable systems have been developed. The best known are PVM and
pARAMACS. PVM (parallel virtual machine) was developed in 1989 and has
been freely available since 1991. It allows many different types of net\vorked
computer (bot11 workstations and PCs) to be linked (via Et11ernet) to form t11e
equivalent of a single parallel machine. It provides a complete environment for
parallel computing, but it will also run on dedicated parallel HPCs where t11e
processors are c01111ected by very high-speed net:works (many times faster than
Etl1ernet, ATM, etc.) based on proprietary vendor and highly customised tech
nology. The same principles apply, but communication speeds and bandwidt11
are very different from a net\Vork of PCs linked by a LAN. PARAMACS (paral
lel macros) is anot11er, albeit more resu·icted, basic message-passing system
developed at Argone National Laboratory; see Boyle et al. (1987), Bomans et
al. (1990). There are a num ber of ot11er message-passing libraries. Sorne of
t11e better-known ones are p4, EXPRESS, Schedule and VCR. However, you
really should not be using, or starting to use, any of t11ese, as t11ere is now a
standard (MPI). Equally, beware of varions u·endy and very appealing lan
guages designed for parallel computing by computer scientists (such as Charm,
Linda, pen, etc.) and stay with international standard-based languages such as
HPF and MPI. Avoid being tempted by vendor-specific add-ons to your
favourite programming language (i.e. previously Craft on tl1e Cray T3D or
parallel C++ or parallel Java) because t11eir appeal is likely to be short-term
(T3D Craft is now extinct), their future uncertain, and tl1e resulting code is
probably non-portable (altl10ugh conversion costs may not be so great unless
you use features t11at are unique to specific hardware). Pat«ùlel-processing HPC
is here to stay, and tl1C u·ick is to ensure t11at your programs are egually long
lived. You should t11erefore be aiming to write code t11at has a shelf-life of
more t11ai1 t\vo or tlu·ee years. Indeed, if tl1e problem is important enough to

justify parallel processing, tl1en t11is will usually be t11e case 1 So tlunk longer
term, or you could be wasting ail t11e intellectual and programming effort

being expended now.

7.3.2 The message passing interface forum

The principal problem wit11 message passing concerned the fact tlrnt historically
t11ere were multiple different message-passing libraries, ail in competition wit11
each ot11er. Additionally, mai1y ai·e (or were) specific to muque hai·dware.
Portability was aclueved at t11e expense of reduced functionality, and tl1C perform
ance advai1tages of non-portable systems were lost. Tins potentially disasu·ous
situation resulted in tl1e MPI forum being established in 1992. This forum was
an ad hoc committee of indusu·y experts tlrnt was formed to salve t11e problems
caused by tl1e Jack of standards. Its goals were to defi.ne a portable stai1dai·d, to
operate in an open way that anyone could join and to be finished in one year.
Indeed, a stai1dard in the form of the message-passing interface (MPI) was pub
lished in 1994 based on work by over sixty people from fort)' orga11isations. It is
now a global stai1dai·d and has been widely adopted. MPI is stable, portable and

184 Parallel programming using simple message passing

Table 7.1 The six most used MPI subroutines.

Subroutine

MPI_INIT

MPI_ COMM_SIZE

MPI_COMM_RANK

MPI_SEND

MPI_RECV

MPI_FINALISE

Function

initialises MPI

specifies how many processors are available

identifies a processor

sends a message

receives a message

ends MPI

readily available. It is also likely to be long-lived, so we would strongly com
mend MPI and its successor, MPI2, to you.

So what is special about MPI? Gropp et al. (1994: p . 11) explain: 'The pri
mary aim of the MPI specification is to demonstrate that users need not com
pronùse among efficiency, portability and functionality. This means that one can
write portable programs that can still take advantage of the specialised hardware
and software offered by individual vendors'. This triple goal of efficiency, port
ability and functionality is a key design feature. MPI is an attempt to keep the
best features of many existing message-passing systems by offering a form of
layered message passing. Subroutines use lower-level libraries mùque to specific
hardware to perforrn the specified tasks . It is tlùs feature tl1at ensures tl1e port
ability (because tl1e specification of tl1e interface is fi"Xed) and mode rate to good
efficiency (since tl1e low-level subroutines can be made specific to particular
hardware and when locally optimised for specific hardware should be lùghly
efficient).

7.3.3 What is MPI?

So MPI is a library of subroutine specifications and not a language. These sub
routines can be called from C and Fortran programs (in MPI2 C+ +). The
interface is tl1e defuùtion of tl1e parameters or arguments used in the subroutines
and defu1es what tl1e subroutine will do. The task of producing subroutines for
particular hardware tlrnt conform to the standard is left for otl1ers (i.e. vendors)
to perform. The key attractions for users are, füst, tl1at tl1e subroutine names
and arguments are standardised and hence portable across different HPC sys
tems and, second, tl1at MPI exists for virtually al! t11e world's parallel HPC hard
ware. However, t11e MPI library is large, and tl1e standard runs to 228 pages.
There are 125 subroutines, but in general only about ten tlrnt are used regularly.
The six most basic fonctions are listed in Table 7.1.

7.4 How to use MPI for SPMD

More jargon! Message passing is not difficult, but you will need to modify serial
code in order to express it in a sui table form . This is not only a matter of adding

How to use MPI for SPMD 185

subroutine calls but you probably also need to restructure your code .
Fort1mately, dlis task is not as serions as you may think. Also , the code can be
tested on a workstation or PC and does not require a multi-million ECU (or

dollar) machine for development work.
Probably the hardest part is coming to terms with the single-program,

multiple-data (SPMD) programming mode! that MPI implements. Tlùs means
exactly what it says. There is a single program tlrnt runs on multiple processors!
You need to remember tl1at each processor runs the same program, but tlùs does
not mean tl1at each processor has to do exactly the same tlùng or use the same
data. Confused? Weil tl1ere is no need to be, because tl1ere are IF statements in
the program that determine which processor does what and when. . . .

Each processor is given a rnùque number, wlùch is useful to 1denufy 1t.
However, tl1e numbers start at 0, not 1. You must remember tlùs! It is essen
tially a product of a C programnùng mentalit:y; in C, arrays start at 0 and i~1
Fortran at 1. So ifyou are a Fortran programmer you do need to remember tl11s
'feat:ure' of MPI. The numbering of processors is important, because in message
passing you use the processor number to assign tasks to each processor via lots
ofIF .. . ELSE .. . ENDIF statements (in Fortran, or the eq1livalent in C).

Remember tl1at the same program is run on al! processors simultaneously!
For example, let us assume tl1at t11e variable rnype contains tl1e number of the
processor assigned to it by the hardware that tl1e program is being run on. If
there are eight processors, tl1en tl1ese will be numbered

0, 1, 2, 3, 4, 5, 6, 7

So 1nype has a different value depending on wlùch processor tl1e code is run on.

Note how the numbering starts at 0, not 1.
So if you want to mal<e a section of tl1e pro gram specific to a particular proces-

sor (so tlrnt it is executed only on tl1at processor), you can do tl1is as follows:

IF(MYPE.EQ.0) TREN

X=l. 0

ELSE

X=2 .0

END IF

The only really confusing part of message passing is realising that in tlùs
example the same program is run on hardware with eight processors. The follow-

ing happens:

1 Each of tl1e eight processors executes tl1e same program (in parallel).
2 The processor numbered 0 does sometlùng different from processors 1, 2,

3, 4, 5, 6, 7 because of tl1e IF statement.
3 There are eight processors but no processor number 8 because tl1e

186 Parallel programming using simple message passing

numbering starts at 0 (tl1is is for Foru·an programmers, who usually tl1ink
that 1 is where you start).

4 The number of processors available can range from one to something large,
so do not 'hardwire' in too many specific processor numbers (otl1er tl1an
processor 0) , because tl1ey may not exist on tl1e mac11ine tlrnn runs your
program. However, tl1ere will always be a processor O.

5 There are now eight separate storage allocations for tl1e variable X. The lay-
out is as follows:

processor 0 has its local X set at 1.0
processor 1 has its local X set at 2.0
processor 2 has its local X set at 2 .0
processor 3 has its local X set at 2.0
processor 4 has its local X set at 2.0
processor 5 has its local X set at 2.0
processor 6 has its local X set at 2.0
processor 7 has its local X set at 2.0
processor 8 DOES NOT EXIST!

6 If processor 0 wishes to add its value of X to iliose stored on otl1er processors,
tl1en it has to obtain tl1ese values by sending messages to each processor ask
ing for tl1em. The complication here is tlrnt each of tl1e processors (1 to 7)
has to expect to receive a message . Since tl1ey are not psycl1ic, you have to
arrange tl1e code so tl1at tl1is happens.

7.5 Example 1: probably the world's simplest MPI
program that could be useful

Consider a simple pro gram tlrnt sets a variable (called A) to a value of 2 7 and
tl1en calcula tes a square root. If you programmed tl1is task in Foru·an for a serial
mac11ine , tl1en ilie following code would suffice:

REAL A, B, SQRT

A=27. 0

B=SQRT (A)

STOP

END

Now consider a parallel system witl1 two processors, and for some 'daft' but
illusu·ative reason you decide tl1at you want to compute the SQRT on tl1e sec
ond processor. The algoritl1m becomes instantly more complicated to accom
modate message passing. You now have to write a new version of tl1e program
to set A = 27 and tl1en send A as a message from processor 0 to processor 1.
Processor 1 has to expect to receive tl1is message, compute a square root and
send tl1e result back to processor 0 as anotl1er message. Tl1is is a kind of ping
pong task only slightly better tl1an tl1e 'hello world' example tlrnt most otl1er
parallel programming books use.

Example 1: probabl)' the world's simplest MPI program 187

Consider a step-by-step algoritl1m for doing tl1is , written in some k.i.nd of

absu·act pseudo code:

Step 1:
Step 2:

Walce MPI up .
On processor 0, set local variable A= 27 .0 and send it to processor 1

as a message.
Expect to receive a message on processor 1, so wait until one arrives .
When it does, tl1e value (in tl1is case 27.0) will be stored locally in

Step 3:

variable A.
Do sometl1ing to B (B = SQRT (A)) on processor 1 and send tl1e
answer (B) back to processor 0 in anotl1er message.

Step 4:

Step 5: On processor 0, expect to receive a message contai11ing a value from
processor 1; wait tmtil it arrives and store it in B.

Step 6 : Close MPI down, end and go to pub to celebrate (tl1is latter bit
of ilie MPI standard got left out because of uncertainty as to who

should pay!) .

Written in pseudo code, tl1is becomes

if (mype.eq.0) then (this is processor 0)

A=27

send A to processor 1

else (this is processor 1)
wait until a value arrives from processor 0

store it in A

endif

if (mype.eq.O) then (this is processor 0)
wait to receive a value from processor 1 and

store it in B
else (this is processor 1)

B=SQRT (A)

send value of B to processor 0

endif

AppendLx 7.1 gives a Fortran version oftl1is MPI program. At first sight, twenty
two lines of code for tl1e MPI version of a five -line Foru·an program does not
seem like a good deal. However, tl1e tenfold code expansion (tl1e two useful
lines expands into twent:y) is a small number problem tl1at is most milikely to be
repeated in real applications. A far Jess tl1an twofold code expansion is more
typical. Nevertl1eless, tl1is example does illusu·ate a very simple MPI application
and gives some dues as to the added complexity of message passing.

Indeed, it is wortl1 examining tlK code in AppendLx 7 .1 closely, because most
of tl1e general sections will repeat in virtually every MPI application tlrnt you
may write. The MPI_INIT initialises tl1e MPI library, and MPI_COMM_RANK
determines tl1e processor number (here MYPE is 0 or 1) of tl1e processor

188 Parallel programming using simple message passing

running the code. The meaning of ail the arguments in these subroutine calls is
described in the MPI standard. You can download it (free) from the World Wide
Web; see http://www-unix.mcs .anl.gov/ mpi/mpich or any local documenta
tion or MPI books such as Gropp et al. (1994).

Remember that the same program is rw1 on both processors. If it is proces
sor 0 (MYPE = 0) then it sets A = 27 .0 and sends a message to processor 1,
else (MYPE = 1) the processor waits until it receives a message (a value 27.0),
which is stored in B. The next IF statement says that if you are processor 0
then expect to receive a message from processor 1 and store it as B, else sqrt
(b) and send the result to processor 0 as a message. Phew! A lot of effort here,
but tlùs is how MPI implements an SPDM programming model. It is very flex
ible . You could remove the second IF. .. ELSE block by moving it ail into tl1e
füst one. Soif processor 0 tl1en send out A and wait until a message is received
from processor 1 containing B, else if processor 1 then wait for a message from
processor 0, compute B and send it back. The hardest partis matching the sends
and receives. If you get this wrong (and it is easy to get confused or 'lost'),
then tl1e program will not work but will be stalled by a processor waiting for a
message tlrnt will never be sent. Tlùs is probably the easiest bug to make. Once
this process of sending and receiving messages is mastered, tl1en tl1e rest is
fairly easy.

It is still a lot of additional effort compared with tl1e serial code, but this is the
cost of rumùng a single program on multiple processors using the processor
number to determine what is being done on each of them. The alternative is to
program each processor individually, but this would be many rimes worse and
almost impossible to debug, because each program would be different. The
SPMD approach is a useful rationalisation and transformation of multiple pro
grams and multiple data implicit in MIMD hardware on to a single code. In
practice, it is not much harder than the ping-pong example, hence tlùs is a
good place to begin. If you understand tlùs example then continue; otl1erwise,
read Section 7.5 again and again and again, or send the autl10rs an e-mail
complaining!

7.6 Example 2: sum Mnumbers

The simplest type of parallel programming in volves sharing DO loops and hence
tl1e associated data and computation over multiple processors - a data parallel
type of problem decomposition. Figure 7.1 shows how a set of M data values
could be disu-ibuted across a serial and/or global-memory machine and a
disu·ibuted-memory one. A master processor (tlùs is best called processor 0,
because tl1ere is always a processor 0) shares out tl1e data (and tlrns implicitly
also tl1e computational load), keeping a share back for itself. Tlùs is tl1e so-called
'master- slave' approach. Very unsound terminology here - you tl1ink! One
processor (processor 0) is the master and sends out tasks to tl1e slaves! There is
a lot here to get tl1e deconsu·uctionist-fenùnist-posunodenùst fraternity over
excited; however, we are merely using words in common currency! Ifyou do not

Example 2: sum M numbers 189

1 1

2

3

M 4

global memory distributed-memory machine

with four processors

F . ,. 7 1 La)'Ollt of the Jvf numbers on a global- and a distributed-memory machine . igu1e .

like tlùs ternùnology then you could u-y leader and consen.sual co-w?rkers (but
it is a bit of a mout11fi.ü, and spelling it correctly can someumes b~ difficult) . .

Tlùs data parallel style of programming is easily implemented 111 MPI, albe~t
witl1 much greater effort tlrnn it wmüd be in HPF. Suppose now tl1at tl1e task is
to use N processors to sum up M random numbers, where M > N . The follow

ing algoritl1111 can be employed.

Step 1:

Step 2:
Step 3:
Step 4:

Create M random numbers on the master processor (0) and send out
M/ N numbers to each slave processor from tl1e master processor.

Sum all M / N numbers on tlùs processor.
Pass tl1e sum back to tl1e master processor.
Master processor collects all sums, adds tl1em up and reports tl1e result.

A serial version of tlùs algoritl1111 in Foru·an is given below.

PARAMETER (M=l 000 000)

REAL X (M) , SUM

C* generate data
DO I=l, M

C* create random data using Cray random number

generator
X (I) =RANF ()

END DO

C* sum numbers
SUM=O. 0

DO I=l, M

SUM=SUM+X (I)

190 Parallel programming using simple message passing

END DO

C* write out answer
WRITE (6, 1) SUM

1 FORMAT ('SUM is', F15.3)
STOP
END

T~1ere are _tlurteen lines of executable Fort1·an here, and tlus is a very simple pro
gram. Tlus code would run on a PC or workstation tlrnt could hancile M =

1,00.0,000 words ofmemory. Note tl1at the computing time is a linear fonction of
tl1e s1ze of M.

Tl~e ~PI program for implementing tlus algoritl1111 is given in Appendix 7.2.
There are nm: forty executable statements . A plain English description is as fol-
lows. There ts tl1e usual MPI wake-up call (MPI INIT) A t.1' • ·

(
' _ . mmg routine

MPI_WTIME) is used to keep note of tl1e time . The routine
MPI_COMM_SI.ZE returns tl1e number of processors (as npes), so remember
that these are ass1gned numbers from O to npes- l, wlllle MPI_COMM RANK
returns tl1e process~r .number (niyid) of the particular processor being us;d here.
Remember that tlus 1s tl1e potentially confusing bit, since if npes = 8, t11en tlie
processors w1ll be numbered 0, 1, 2, 3, 4, 5, 6, 7. The same program runs on
ea~h .of them,. so _tJ1e ~nly way to malce sections of tl1e code specific to a particu
lar processor ts via tli1s processor number, wluch is called myid.

The füst DO .loop calculates the share of tl1e M numbers to be sent to each
proces~or. It <livides the M numbers by tl1e number of processors and stores tl1e
result 111 SIZE, so tl1at SIZE (I) contains tl1e allocation of the data to be sent to
tlie. I.th processor. The second DO loop allocates tl1e residual (if Mis not exactly
divisible by npes) between the processors to t1·y to ensure that each bas an equal
amount of work to do. These t\vo DO loops are a little t1·icky (because t11e
pro~~sso1: numbenng st~rts at zero), so let us test tl1e logic on a small example,
wo.rkmg tt out by band m. order to be certain we get it right, because any errors
h~re would b_e catast1·opluc and possibly very difficult to detect later as tl1e pro
gram would run but produce the wrong answer.

In tl1is worked example, let us assume npes = 4 and M - 8 so ea 1 . ' - , , c 1 processor
will get exactly 2 numbers each. The results are

SIZE (0) = 8/ 4 = 2

SIZE (1) = 8/ 4 = 2

SIZE (2) = 8/4 = 2

SIZE (3) = 8/4 = 2

and tl1e second DO loop will be ignored.

If M = 10 and npes = 4, then tl1e following work allocation would occur:

SIZE (0) = 10/4 = 2

SIZE (1) = 10/4 = 2

SIZE (2) = 10/4 = 2

SIZE (3) = 10/ 4 = 2

Example 2: swn M numbers 191

Because in integer aritl1metic as implemented in Fort1·an or C t11e decimal part is
lost, 10.0/4.0 = 2.5 becomes 2 when converted to an integer (you round down
to tl1e nearest whole number). The second DO loop now allocates the residual,

so tl1e work allocation now becomes:

SIZE (0) = 2 + 1

SIZE (1) = 2 + 1

SIZE (2) = 2

SIZE (3) = 2

Note tl1at processors 2 and 3 have slightly Jess to do tlrnn processors 0 and 1,
and tlus will result in tl1e total wall dock or elapsed time being determined by

tl1e time taken by processor 0.
Note here tl1e importance ofwriting code tl1at can hancile tlie case where only

one processor (processor 0) is available and also when tl1ere is a much larger
number; indeed, tl1e logic copes well witl1 ail of tl1e possibilities. This is wortl1
doing, because it will allow tl1e parallel code to run on eitl1er a serial maclune or
parallel hardware witl1 a variable number ofprocessors. However, beware! There

are tlu·ee situations to be tested for:

1 only one processor;
2 when tl1e number of processors is exactly divisible into M; and

3 when (2) does not hold.

It is important you obtain tl1e same results vvitl1 al! tl1ree and tlrnt t11ey match a
gold standard based on a purely non-MPI, serial equivalent. Talce no chances.
Program and logic bugs of ail kinds tl1rive extremely well in parallel worlds; tl1ey
just love tl1e complexity and possible confusion tl1at parallelism causes serially
minded humans! If you leave out some of tl1e work, due to an error, tl1e pro
gram will terminate normally. Everytlung will look fine, but tlie result will be
wrong! The danger is tlrnt you may not know what tl1e correct result is .

Retunung to the program. It nught be a good idea to sum tl1e values in SIZE
to ensure tl1at it always equals M. lt is better to be safe tl1an s01-ry, because if you
happen to get tlus processor-work allocation wrong it could talce a very long
time and much effort to determine why tl1e result is wrong or why it works cor
rectly witl1 one number of processors but not witl1 otl1ers. When it can be done
easily, it is often wortl1 wlule adding exua li.nes of code to check the logical
accuracy or consistency of your algoritl1m's code. Tlus is essential, because
processor-work allocations are botl1 critical and potentially error-prone. For life
long Fort1·an programmers, a processor numbering scheme tl1at starts at 0 is a

192 Parallel programming using simple message passing

potential and ongoing source of possible logical confusion. So add logical con
sistency checks to be safe.

Note also that any sections of the code not made dependent on processor
number (by IF .. .THEN statements) are run simultaneously by ail the processors.
So SIZE is actually computed simultaneously on ail M processors. This may seem
wasteful, but it is actually faster than computing it on processor 0 and subse
guently sending out tl1e results as messages . It is important in MPI (and in al!
otl1er parallel systems) to minimise tl1e amount of interconnection communica
tions traffic being generated. The processors can access their local memories
much more guickly than they can send or receive messages from otlier proces
sors. However, t11ey also do aritl1111etic much, much faster than even local mem
ory accessing and many rimes faster tlrnn message processing. So good parallel
algorithms not only need to exploit parallelism but also should seele to localise 1nem
ory access and explicitly minimise as far as is practicable the amount of message
passing being performed. This is not only something tl1at you leave to the code
writing stage but, as far as possible, that also needs to be built into the design of
the parallel algoritl1m being coded so that tllis feature continues to apply as t11e
number of processors is increased.

The tllird set of DO loops generates random numbers and sends out shares to
each processor. Note t11at tllis is run only on processor O. A random number
generator is used here instead of reading data from a file in order to malce t11e
code self-contained. Processor 0 also keeps a chunk of t11e work for itself. Also
see how t11e slave processor numbers are part of t11e DO loop, using 'l' as tl1e
index. Remember t11e potential for confusion here.

To summarise, npescontains tl1e number ofprocessors, but t11e processor num
bering goes from 0 to npes- l . The MPI subroutine MPI_SEND t11en sends a
message to each of t11e processors t11at contains its share of t11e data . The array X
stored on processor 0 is filled wit11 SIZE (I) values, and tllis is tl1en sent to proces
sor I. The remaining SIZE (0) values are left for processor 0 to handle. A useful
trick here would be to have each slave processor verify t11at the message just
received actually came from processor O. Tllis would be an example of a defensive
programming style t11at is often useful in more complex situations. Wllile proces
sor 0 is doing ail tllis work t11e ot11er processors are idle , waiting to receive t11eir
share of the data. This is the serial part of t11e progran1; cf Amdalll 's law.

The next section of code does tl1e summation (see the fourtl1 DO loop). Each
processor sums its own chunk of data. 'OK, so how does it know tl1at it should
sum what is in X(I)?' Well, tllis bit of tl1e code is executed simultaneously on ail
processors, but each processor has been sent its part of t11e data by t11e previous
code in DO loop tlu-ee.

There are now M different processor-specific sums tlrnt need to be added up.
So processor 0 asks each processor in turn to send its result so tlrnt it can t11en
add t11em ail up . The answer is accumulated in tsum. Tllis involves processor
0 asking processors 1 to npes- l for a message and when tllis is received sum
ming tl1e result. Meanwllile, al! t11e remaining processors are sending messages
containing tl1eir part of the answer. The result is a parallel algorit11111 expressed

Example 2: swn M numbers 193

in a very general form tllat will work wit11 a1:y size of M, provided tlrnt each
processor has sufficient local memory to hold rts share of t11e X values . .

At tllis point, you (tlle reader) really do need to ch~ck t11~t you ~la:'e. und~r
stood what has happened. Ifyou do not, t11en reread tlli~ secuo~. TI_us l~ rmport-

t as Y
ou will not get much furtl1er with message passmg until tlus progran: is

an ' ' · · · If tlunk
seen as u·ivial and you understand exactly what is go111g on 111. rt. you .
you do tmderstand tllis process, t11en try the following quesuons (answers 111

Appendi\'. 7. 3):

Question l. On how many processors is tl1e fourtl1 DO loop run?

(a) 1
(b) 7
(c) 8.

Question 2. On how many processors is the tllird DO loop run?

(a) 1
(b) 7
(c) 8.

Question 3 . On how many processors is the second DO loop run?

(a) 1
(b) 0
(c) 8.

Question 4. On wllich processor is tsum stored?

(a) 0
(b) all of t11em
(c) 1, 2, 3, 4, 5, 6, 7.

Question 5. Wl1at is the value of tsum on processor 4?

(a) the same as on processor 0
(b) different from on processor 0
(c) undefined.

Question 6 . How many different versions of sum exist?

(a) 1
(b) 7
(c) 8.

Finally, note tllat even in tllis simple problem t11ere is considerable p~tential for
logical 'nlistalces' to creep into the code. Sorne of tl1ese are as fo!lows.

1
2
3

errors in tlle allocation of work so tlrnt not al! M values of X are summed;
tlle sanle values of X could be sent to each processor by error; and
tlle final global summation could easily use only processor 0 values of
sitm (if tJ1e results from t!1e other processors were not sent or

received).

194 Parallel programming using simple message passing

2.5 T

~
2 l

1.5 T
(!)

E

o: ! i=

0 -

0 5 10 15 20

Number of processors

Fig1we 7.2 Wall dock time for Example 2.

None of these would cause the program to fail during execution or produce any
identifiable error. Instead, the results would be 'wrong'. How you verify the
results is always a difficult question in ail types of programming, but the degrees
of difficulty are far greater in a parallel-computing environment, especially when
the results may be uncheckable. For instance, a several-hour run may not be
verifiable . lt worked on a small data set run on few processors, and you have to
110pe that it worked correctly in tl1e foll-size application.

The results of nmning dus program on tl1e Cray T3D are shown in Figures
7.2 and 7.3. Figure 7.2 shows tl1e wall dock rime. This is tl1e elapsed rime for
tl1e run. It decreases initially, reaching a minimum witl1 four processors, and
tl1en increases again! A good code for a suitable problem would exhibit a con
tinued decrease in wall dock rime as tl1e number of processors increased until it
reached tlrnt time due to tl1e serial part of tl1e code. Remember tl1e discussions
in earlier chapters. Parallel processing does not reduce tl1e total amount of CPU
rime being expended and usually increases it, hopefolly only slightly, due to
overheads. The basic equation for tl1e run rime on a serial machine is as follows:

total time 1 = rime talcen by 1 processor

For a parallel machine witl1 K processors it is

total time2 = sum of ail processors rimes expended by each of tl1e K
processors, and

total time3 = wall dock rime since start of run

Note tlrnt in parallel programming t!1e only relevant rime is total time3, and if
you are nuuùng on M processors on a well-behaved problem tl1en time3 could

Example 2: sum M numbers 195

40 T
35 -1

30
Cil
E 25 ·.;:;

::::>
20 o..

ü
ëii

15 1 0
f-

10 -

5 1

0

0 2 4 6 8 10 12 14 16

Processors

Figure 7.3 Total processor time for Example 2.

well be 1/ Mth of total time
1

. Note also tlrnt total time2 will always exceed total
time

1
, even if tl1e algoritl1111 is identical and only one processor is being us~d.

The difference is tl1e parallel-processing overhead implicit in tl1e code, wluch
will usually be small. Total time3 may (ifyou are lucky and dever enough to do
it) be less tl1an total time

1
divided by M, but only if tl1e algoritl1m bas some spe

cial superlinear performance features (i.e. it somehow benefits from its paral
lelism) or benefits from special features of the parallel hardware (viz. more or

faster caching).
Figure 7 .3 shows tl1e total CPU rime used. Tlùs should be increasing as .a

straight Jine, not as an upward curve. The reason here is tl1at altl1ough tlus
code is lùghly parallel it does not scale well. In fact, mstead of a speeding-up
there is a slowdown! As more processors are used so more messages are passed
around and at tl1e same time tl1ere is a reduction in tl1e amount of work being
perforu'ied by each processor. There soon comes a point where t!K commu~
cations overheads dominate t!1e run rimes. Q1ute simply, insufficient work is
being done in tl1e DO loops . In otl1er words, tl1e parallelism is too fine-grail:ed
for t]1e processor being used. If you increase tl1e amount of data bemg
processed and increase t!1e number of processors it becomes even wor~e,
because commmùcations increase in proportion to tl1e amount of data, while
t]1e computational loading on each processor decreases as tl1e number . of
processors increases. Only if you add some really heavy-duty 1~atl1ematical
fonctions and computation to tl1e parallel loop will t!1e computation start to
exceed t]1e communications overheads. Tlùs balancing point is hardware-spe
cific and hence a moving fonction of HPC tedmology and time. What worked
well on a transputer in 1990 will almost certainly no longer work well on more

modern parallel hardware .

196 Parallel programming using simple message passing

A final aspect to consider is Joad balancing. Here there is no problem, because
each processor is given the same share of the data and hence the work to per
form. However, if you gave 90 per cent of the numbers to processor 4 on an
eight-processor machine, then processors 0-3 and 5-7 w0tùd be idle most of the
rime and you would discover that total time3 was more or Jess constant regard
less of how many processors were used. Load balancing, or keeping ail the
processors working fiat out for as much of the rime as is possible, is discussed
further in Chapter 9 . It becomes a major design issue where the work is harder
to share out in equal lumps or is of unequal computational intensity.

7. 7 Example 3: a data parallel spatial interaction in MPI

7. 7.1 The theory

Now consider a more useflù example. The spatial interaction mode! can be
reprogrammed using MPI. It makes a good but more advanced case study,
because this simple-looking mode! displays considerable complexity when con
sidered from an MPI point of view. When a data parallel approach and HPF was
used previously this complexity was completely hidden, but so were varions per
formance issues. With MPI both are fully exposed, but so too are varions ways
of improving the performance of the program that are not available by any
other means.

The first task and the key design decision is once again to decide how to dis
u·ibute the data. It is useful to remember that the origin-consu·ained spatial
interaction mode! uses the following arrays :

1 three N by N matrixes for the flows (containing both observed and pre
dicted values) and distance data;

2 two one-dimensional (column) arrays of N elements for the Oi and A,
terms; and

3 a one-dimensional (row) array for the N elements forming the Di tenns.

Note that both arrays (2) and (3) are one-dimensional arrays. The distinction
between row and colu1m1 arrays is only made because it reflects the way in which
the spatial interaction mode! accesses the data and thus gives dues as to how it
can be handled in a message passing environment .

Figure 7.4 shows the data stored on a global-memory serial PC or work
station or shared-data parallel machine. Ali the data are readily accessible to the
processor or processors, and no visible message passing is needed to access any
of it. In a disu·ibuted-memory environment there is no longer a single global
memory, so each processor has either a copy of ail the data or just some of it.
The latter is often the only possible su·ategy, otherwise the maximum size of
problem would be determined by the memory of a single processor rather than
by the total sum of the memories of al! the processors . We assume, therefore,
that each processor is to have only part of the total data held in its local memory.

Examp1e 3: a data para11e1 spatial interaction in MPI 197

Ü ; arrays

D data stored on a particular processor in local memory

[] data that has to be assembled by master and sent as a message

Figure 7.4 Layout of spatial interaction model's arrays on a serial processor or on
multiple processors with a single global memory.

It is accessible by other processors, but it now requires that ail data requests and
ail data u·ansfers occur as messages. The layout of the data across the processors
is quite obviously crucial from a performance point of view. This is not a new
problem: it occurs in HPF too. The difference is the extent of its visibilit:y. In
MPI it is explicit, in other approaches it is largely implicit and hidden, although
you still have to know how to disu'ibute it. There are varions ways of distribut

ing the data, some of which are far better than others.
One data decomposition scheme is to assign each processor a square chunk of

the data. You now have to imagine what the data stored on any individual
processor will look Wce. As in the previous summation example on a distributed
memory machine, each processor has instant access only to that part of the data
held in its local memory, although it can access data held non-locally by asking
for it. For example, if there are four processors then the u·ip and cost arrays

198 Parai/el programming using simple message passing

A; Ü; arrays

D data stored on a particular processor in local memory

~ data that has to be assembled by master and sent as a message

Figit1'C 7.5 A black decomposition approach to the layout of the spatial interaction
model's arrays for four processors with ctisu-ibuted memory.

could be partitioned as shown in Figure 7 .5 . The problem is that no complete
part of the O;, Di and A; arrays can be stored easily in local memory belonging
to ail the processors. Instead, these quantities would have to be computed on
local processors for that part of the data held in local memory, summed by the
master and the results finally sent out to ind.ividual processors .

A.nother decomposition scheme would be by columns; see Figure 7.6. This
again shows that none of the row arrays (A;, 0;) values would be locally avail
able . They wmùd have to be computed by the master and sent out before the
mode! could be computed.

Figure 7.7 shows a row decomposition scheme . Now it is on.ly the array D.
that is not local and thus will need to be sent to and from the rnaster.

1

A key question now is which layout will be best for the spatial interaction
mode!? If you get it wrong, then you will end up generating a lot of add.itional

Example 3: a data parallel spatial interaction in MPI 199

A; Ü; arrays

D data stored on a particular processor in local memory

D data that has to be assembled by master and sent as a message

Figure 7.6 A column decomposition of the layout of the spatial interaction model's arrays

for four processors .

communications traffic which could have been avoided, and this will slow clown
or even totally wreck the performance of the program. If you compare Figures
7 .5, 7.6, and 7.7 then clearly Figure 7.7 will be best, since only the Di values
would have to be computed and sent out. This row decomposition is best
simply because it minimises the amount of communications traffic generated by

the message passing.
Incidentally, it is very useful to add some check sums to the code in order to

verify the logic of the decomposition. As noted before, it is very easy with mul
tiple processors ail having their own version of the same variable to get it wrong,
to miss out some messages, or to store the results in the correct array and at a
valid but logically wrong address . The compiler may not detect it but the results
will be wrong! An example of th.is could be the computation of Ü; and Di values.
These should sum to the same value as the total sum of the Tii array. It may not

200 Parallel programming using simple message passing

A; Ü ; arrays

D data stored on a particular processor in local memory

~ data that has to be assembled by master and sent as a message

Figure 7.7 A row decomposition of the layout of the spatial interaction model's arrays for
four processors.

do so if you get the data decomposition logic wrong. On the other hand, con
sider the sum of squares variable (SS) value. Suppose that you forgot to sum the
many local copies. The restùt would be that the performance of the mode!
(which SS measures) wmùd now improve with increasing numbers of proces
sors! Check sums wmùd spot ail these errors. Otherwise, you would have to
compare the restùts with a single processor run or a benchmark obtained else
where to detect whether there is a problem, but then you would have no indi
cations of where to look for it. Another usefi.ù practice is to verify that the code
produces the same result when run on different numbers of processors and with
clifferent levels of compiler optimisation - and then maybe if it is possible on clif
ferent HPC machines.

Hence the spatial interaction mode! is a good test bed, partly because virtuaily
any otl1er example of data decomposition would be easier and t11erefore less

Example 3: a da ta parallel spatial interaction in MPI 201

useful as an illustrative example. In tl1is mode!, t11ere are always some data tl1at
are not available locaily and have to be sent for. The u·ick is to mÎ11În1Îse how
much is involved. Witl1 MPI, t11ere is a factor of about two increase Î11 code and
a factor of ten increase in logic complexity (tl1is perception of complexity
decreases with experience), but then you can gail1 a factor of M speecling-up in
performance (where Mis tl1e number of processors and can be quite large) or an
ability to process problem sizes tlrnt are tao large for any ot11er computer due to
memory restrictions. Remember that t11e Cray J90 used in Chapter 6 could not
hancile more tl1an 2000 rows and columns, whereas t11e Cray T3D's linlÎt is

about fifteen rimes greater.
Note also t11e adclitional flexibility tlrnt MPI has provided you witl1 . You can

parallelise tl1is mode! in t11ree ways:

1 by sharing out t11e critical DO loops as demonsu·ated here, which is a form

of fine -grained parailelism;
2 by ru111ùng tl1e entire mode! in parailel, although tl1is requires that t11e

number of parallel mode! calls is some integer multiple of tl1e number of
processors being used and that tl1e nature of t11e application is best served in
tl1is way (if it is not t11en you will need to change the algorithm tlrnt cails tl1e
mode! so t11at t11ere is some value of 64 or 256 or more concurrent whole

mode! calculations); and
3 by a mi,-xture of (1) and (2); for instance by allocating eight processors to

each mode! and t11en ru111ùng tl1irty-two models at a rime Î11 parailel on a

256-processor machine .

Currently, only MPI offers you t11e flexibility to do tlùs .

7.7.2 The MPI code

The code is given in AppendL-x 7.4. It can be translated into English as follows.
In Section 1 t11ere is t11e usual MPI walce-up call (MPI_INIT) and a cal! to
determine t11e number of processors available (MPI_COMM_SIZE), wlùch is
variable , and your code needs to be able to handle tlùs variability. Typicaily, you
would start by testing it on one processor (your local workstation) and t11en
increase t11e number of processors (probably on a local workstation farm) prior
to moving on to sometlüng far more powerful.

Back to tl1e code . The next important call to MPI determines what processor
you are ru111üng on. Remember t11e SPDM mode!? Then ifyour processor is t11e
master task (mype = 0) you will create some random data using a random num
ber generator (ranf), storing the values in the two arrays T and C . You cmùd
have done tl1is on ail tl1e processors simtùtaneously by leaving out the 'if
(mype.eq.O) t11en ... section', but let us be awkward and create it on just one

processor.
The next step (Section 2) is to clisu-ibute tl1e data accorcling to the su·ategy

previously cliscussed and illusu·ated in Figure 7. 7. Tl1is is a little more complex.

202 Parallel programming using simple message passing

First, the master processor calculates how big a chunk each processor wiil
receive . It could be sent out individually, but it is far more efficient to send it out
in longer messages (see buff), and it is sent to each slave processor using
MPI_SEND; T and C values are distributed to processors 1 to npes, but again
some of the data are kept for the mas ter. Meanwhile (Section 3) each slave
processor is expecting to receive some T and C data (MPI_RECV).

Now each processor (Section 4) forms O; and Di sums from its share of the T
data held in local memory. This is a little tricky, because while ail tl1e O; values
can be computed for any individual processor's share of the data, not ail tl1e
columns will be stored locally: parts are scattered across ail tl1e processors being
used. So (Section 5) tl1e mas ter has to collect tl1em al!, add up al! tl1e partial
sums and tl1en redistribute tl1em again. Confused? Weil, tl1ere is no need to be,
it is not tl1at difficult. Yon just need to be careful to separate in your head what
tl1e master processor is doing and what tl1e slaves are up to.

The mode! is now calculated in parailel (Section 6) . This is run on each proces
sor concurrently, but remember tlrnt each processor is working on a different part
of tl1e data . For example, tl1ere are now npes- l versions of SS (tl1e sum of the
mode! errors squared), each relating to part of the data. So guess what is next?
Yes, you have got it. The master processor asks each slave for its version of SS. It
adds tl1em together and computes the global mode! sum of errors squared.

Note tl1e numerous opportunities here for parailel bugs and programmer con
fusion to occur. In particular, you cotùd accidentally distribute tl1e same data
ratl1er tl1ar1 different data in Section 3 of tl1e program. You could accidentally
but wrongly compute the partial Di sums in Sections 4 or neglect to distribute
the final al! data Di values in Section 5. Yon could easily run tl1e mode! in
Section 6 on tl1e wrong data or in Section 7 forger to gatl1er al! the local par·t SS
values from tl1e slave processors . How do we lrnow about tl1ese potential bugs?
Weil, we have probably made tl1em (or similar· ones) while learning MPI, or
watched otl1ers malce tl1em. The worst aspect of parallel programming witl1 MPI
is tl1at tl1e job would appear to run normaily; it is just tl1at tl1e results would be
wrong. Even worse is tl1at if you tl1en ran it on a single processor it wmùd prob
ably produce tl1e correct answer! Arggh!

The answer to some of tl1e potential MPI parailel confusion is to start with a
clear· ar1d explicit definition of tl1e algoritl1m you plar1 to program before you
start programming it. A clear and accurate map of tl1e master-slave relationship
is absolutely essential. Once tl1is is right, tl1e rest is relatively easy apar·t from the
odd logic bug. So remember tl1e advice from ear·!ier in tllis chapter. Add some
extra code to do some additional work to test and self.check tl1e logic . An ex
ample would be to sum tl1e T values when tl1ey were created, get the processors
to sum tl1e O; and Di values tl1ey are working on ar1d test tl1at it equals tllis orig
inal value of sum T. If not, you have a possible !agie error in tl1e work distribu
tion section, or in tl1e additional code you have just added to test for logic
errors! Of course, logic checking will not tell you where tl1e error(s) are
occurring, only tl1at tl1ey exist. The 11ice aspect is tl1at bugs tlrnt are processor
number-specific may also be detected.

Conclusions 203

Spotting and füing a parailel code bug is really exhilarating! A feeling of
immense euphoria is easily engendered, until you discover tlrnt tl1e results ar·e
still not right. But how do you k.now what is 'right'? Weil tlrnt is easy. You run
tl1e serial code on a workstation and compare values for test data, checking tlrnt
char1ging tl1e numbers of processors still yields tl1e same restùts . If tl1ere is a
result difference tl1e questions are now:

1 Is it small enough to be a hardware effect (it is weil established that tl1e
same sequence of ar·itl1metic on two different machines, or compilers, or
lar1guages or operating systems need not be identical, altl1ough the differ
ences wmùd normally be very small, i.e. 0.1 X 10- 5 or less).

2 Wllich result is tl1e 'right' one anyway?

Sorry! We cannot help you much further. However, experience suggests that
parallelising code may easily create new bugs, but it may also remove old ones
tlrnt were previously undetected or occasionaily activate old bugs tlrnt were never
previously encmrntered. A book of devastatingly 'good' parallel programming
bugs would malce totally fascinating reading.

Finally, anotl1er fear·ful tl10ught. How do you know tl1at tllis code is actually
correct and yields tl1e right result? The answer is tlrnt you do not, but you hope
that tl1e ad hoc testing regime you may have chosen ar1d inflicted on it bas been
sufficient to detect, and you have corrected, al! tl1e bugs. Three furtl1er rules of
tl1umb here may be of some comfort:

1 Programs seldom work first time, so iftl1ey do be extra careful to check tl1em;
2 Expect to find a small number of major bugs, so look until your eyes grow

tired or you find some; and
3 If you find one bug tl1en tl1ere could well be otl1ers.

Then it is a matter of faith and good luck! 'What's tlrnt [we hear you ask]?
How does a computational scientist know tl1at bis massively par·allel program
tlrnt has just run for six weeks on tl1e world's fastest par·ailel machine bas pro
duced tl1e right restùts?' The simple answer is tl1at you do not lrnow what tl1e
right restùt is! Yon could run it again on a different maclline to see if it provides
similar· results, or you use what k.nowledge you have to check tl1at tl1e results
malce good sense and/or conform to tl1eoretical expectations, etc. Then you just
!10pe! After al!, tl1e task of falsification in science is a matter for otl1ers to per
form on your work. Later.

7 .8 Conclusions

Tllis chapter provides a gentle introduction to tl1e ar·t of message passing. It has
done tllis by providing an extended description ofthree examples with a line-by
line English account of what tl1e message passing is doing. We are convinced
tl1at lear·11ing MPI by understanding relatively simple case studies is by far tl1e

204 ParaUel programming using simple message passing

best way for geographers (and others) to develop their message-passing skills. It
is then a fairly easy task to read the MPI documentation to discover exactly what
tl1e varions options do and what otl1er subroutines c0tùd have been used as
alternatives . Once you have grasped tl1e essence of iliese tl11"ee examples and
developed an MPI -oriented mind set tl1en you are ready to do some usetlù par
allel programming and be up to tl1e challenge of tl1e more complicated examples

discussed in tl1e following chapters.

Appendix 7.1: ping-pong code

Key: Ail Processors execute
Master only
Slaves only

PROGRAM PING

#include <mpif.h>
REAL A,B
INTEGER MYPE,IER
INTEGER STAT(MPI_STATUS_SIZE)

C START MPI

CALL MPI_INIT(IER)

C FIND OUT WHAT MY ID IS

CALL MPI_COMM_RANK(MPI_COMM_WORLD,

X MYPE, IER)

X

X

X

IF(MYPE.EQ.0} THEN
A = 27. 0

CALL MPI_SEND(A,l,MPI_REAL,l,l ,

MPI_ COMM_WORLD,IER)

ELSE
CALL MPI_RECV(B,l,MPI_REAL,0,1,

MPI_COMM_WORLD,STAT,IER)

ENDIF
IF(MYPE.EQ.0) THEN

CALL MPI_RECV(B ,l ,MPI_REAL,0,1,
MPI_COMM_WORLD,STAT,IER)

ELSE
A SQRT (B)
CALL MPI_SEND(A,l,MPI_REAL,l,l,

X MPI_COMM_WORLD,IER)

ENDIF
C FINISH UP AND GO TO PUB

CALL MPI_FINALIZE(IER)

STOP
END

summing M numbers in parallel 205

Appendix 7 .2: swnming M numbers in parallel

Key: Ali Processors execute
Master on.ly
Slaves on.ly

PROGRAM SUMS
IMPLICIT NONE

#include <mpif.h>
INTEGER MYID,NPES,M,MAXPES
PARAMETER (M=l000000,MAXPES=256)
INTEGER SIZE(O: MAXPES) ,OTAG,STAG,IER,COMM,I,J

REAL X(M} ,SUM,TSUM
INTEGER STAT(MPI_ STATUS_SIZE)

OTAG=l
STAG=2

CALL MPI_INIT(IER)
TIMESTART=MPI_WTIME()

IF(IER.NE.0) THEN
WRITE(*,*) 'ERROR IN INITIALISATION'

STOP 1

ENDIF
COMM=MPI_COMM_ WORLD
CALL MPI_COMM_SIZE(COMM,NPES,IER)
CALL MPI_COMM_RANK(COMM,MYID,IER)

C *FIRST DO LOOP*
DO I=O,NPES-1

C DIVIDE THE PROBLEM UP BETWEEN THE PROCESSOR

SIZE(I)=M /NPES

END DO
C *SECOND DO LOOP*
C ADD THE EXTRA BIT TO EACH PROCESSOR IN TURN

C REMEMBER THIS IS AN INTEGER CALCULATION

c

c

DO I=O,M-NPES*(M/ NPES)-1
SIZE(I) = SIZE(I}+l

END DO
IF(MYID.EQ.0) THEN
IF MASTER THEN DISTRIBUTE CHUNKS TO EACH PROCESSOR

THIRD DO LOOP
DO I=l, NPES-1

206 Parallel programming using simple message passing

DO J=l,SIZE(I)

c

ELSE

X (J) =RANF () *10. 0
END DO
CALL MPI_SEND(X,SIZE (I) ,MPI_REAL,I,OTAG,
COMM, IER)
END DO
DO J=l,SIZE(O)

X(J)=RANF()*lO.O
END DO

C SLAVES JUST RECEIVE A CHUNK
CALL MPI_RECV(X,M,MPI_REAL,0,0TAG,COMM,STAT,IER)
ENDIF

C *FOURTH DO LOOP*
SUM=O. 0
DO I=l,SIZE(MYID)

SUM=SUM+X (I)
END DO

IF(MYID.EQ.0) THEN
C MASTER COLLECTS THE RESULTS AND SUMS THEM

TSUM=SUM
DO I=l,NPES-1

CALL MPI_RECV(SUM,l,MPI_REAL,I,STAG,COMM,STAT,IER)
TSUM=TSUM + SUM
END DO
WRITE (*, *) 'SUM IS ' , TSUM

ELSE
SLAVES JUST SEND THE RESULT TO THE MASTER

CALL MPI_SEND(SUM,l,MPI_REAL,0,STAG,COMM,IER)
ENDIF
TIMEEND=MPI_WTIME()
IF (MYID. EQ. 0) WRITE (*, *) 'ELAPSED TIME '

X (TIMEEND- TIMESTART)
CALL MPI_FINALIZE(IER)
END
STOP
END

Appendix 7.3: answers to self-test questions

Ql (c) 8
Q2 (a) 1
Q3 (c) 8
Q4 (a) 0

Spatial interaction model example 207
QS (c) undefined
Q6 (c) 8

Appendix 7.4: spatial interaction model example

Key: All Processors execute
Master only
Slaves only

C SI_l . F SPATIAL INTERACTION MODEL

IMPLICIT NONE
#include <mpif .h>

INTEGER N
REAL BETA

c

c

c

c
c

PARAMETER (N= l500, BETA=O. 25)
REAL T(N,N) ,C(N,N) ,O(N) ,D(N) ,P(N,N) ,SUM,SS,

X RANF,A(N),SST,DL(N)
1 ,BUFF(N)

INTEGER I,J,SIZE,MSIZE,K
INTEGER IERR,COMM,MYPE,NPES,

X STATUS(MPI_STATUS_SIZE)
INTEGER TTAG,DTAG,CTAG,STAG
DOUBLE PRECISION START,END

TTAG=l
DTAG=2
CTAG=3
STAG=4

SECTION 1- START MPI

CALL MPI_INIT(IERR)
IF(IERR.NE.0) THEN

WRITE(*,*) 'ERROR INITIALISING MPI'
STOP 1

ENDIF
START=MPI_WTIME ()
COMM=MPI_COMM_WORLD

FIND OUT HOW MANY PROCESSORS THERE ARE

CALL MPI_COMM_SIZE(COMM,NPES,IERR)
FIND OUT WHAT MY ID IS

CALL MPI_COMM_RANK(COMM,MYPE,IERR)
GENERATE SOME RANDOM DATA
START OF MASTER REGION

IF(MYPE.EQ.0) THEN

208 Parallel programming using simple message passing

c

c
c

c

c

c

SS=RANF ()

DO I=l,N
DO J=l,N

T(I ,J)=RANF()*lO.O
C(I,J)=RANF()*lOO.O

END DO
END DO

END OF MASTER REGION
END IF

SECTION 2
CALCULATE HOW BIG A CHUNK EVERYONE GETS

SIZE=N/NPES
DISTRIBUTE THE DATA

IF(MYPE .EQ.0) THEN
MASTER GETS THE EXTRA BIT
MSIZE = (N - SIZE*NPES) + SIZE

MASTER DOES THE SEND
DO J=2 ,NPES

DO I=l, SIZE
DO K=l,N
BUFF(K) =T((J-2) *SIZE +I,K)

END DO
CALL MPI_SEND(BUFF,N,MPI_REAL, (J-1),TTAG

1 , COMM , IERR)

END DO
END DO
DO J=2,NPES

DO I = l,SI ZE
DO K=l,N

BUFF(K)=C((J - 2)*SIZE + I,K)

END DO
CALL MPI_SEND(BUFF,N,MPI_REAL,

1 (J-1) ,TTAG,COMM,IERR)

END DO
END DO
DO I=l,MSIZE

DO J=l ,N
T(I,J) =T((NPES - 1) *SIZE + I,J)
C(I,J)=C((NPES - l)*SIZE +I,J)

END DO

END DO
SIZE=MSIZE

ELSE

c

c

c
c

Spatial interaction model example 209

SECTION 3 WORKER - RECEIVE DATA

DO I=l, SIZE
CALL MPI_RECV(BUFF,N,MPI_REAL,0,

1 TTAG,COMM,STATUS,IERR)

1

DO K=l,N
T(I,K) =BUFF(K)

END DO
END DO
DO I=l, S IZE

CALL MPI_RECV(BUFF,N,MPI_REAL,0,

TTAG,COMM,STATUS,IERR)

DO K=l,N

END DO

END DO

END IF

C (I, K) =BUFF (K)

SECTION 4 CALCULA TE 0 (I) AND D (J)

DO I=l,N

O(I)=O.O
D(I)=O.O

END DO

DO J=l,N
DO I =l, SIZE

O(I) = O(I) + T(I,J)
D(J) =D (J) + T(I,J)

END DO

END DO

IF(MYPE.EQ.O) THEN

SECTION 5
MASTER REGION - COLLECT D(J) AND REDISTRIBUTE

1

1

END DO

DO I=2 ,NPES
CALL MPI_RECV(DL,N,MPI_REAL, (I-1),

DTAG,COMM,STATUS,IERR)

DO J=l,N
D (J) =D (J) +DL (J)

END DO

END DO
DO I=2 ,NPES

CALL MPI_SEND(D,N,MPI_REAL, (I-1),DTAG

,COMM,IERR)

210 Parall.el programming using simple message passing

ELSE

CALL MPI_SEND(D,N,MPI_REAL,0,DTAG,COMM,IERR)
CALL MPI_RECV(D,N,MPI_REAL,0,DTAG,COMM,

1 STATUS,IERR)
END IF

C SECTION 6 CALCULATE MODEL
SS=O. 0

C THIS IS THE PARALLEL LOOP
DO I=l, SIZE

C * CALC A(I)
SUM=O. 0
DO J=l ,N

SUM=SUM+D(J)*EXP(-BETA*C(I,J))
END DO

A (I) = 1 . 0 / SUM
C * CALC MODEL

c

IF

1

DO J=l,N

P(I,J) =A(I)*O(I)*D(J)*EXP(-BETA*C(I , J))
SS=SS+(P(I,J)-T(I,J))**2

END DO
END DO

IF(MYPE.EQ.0) THEN
SST=SS

SECTION 7 MASTER COLLECTS ALL THE PARTS OF SS
DO I=2, NPES

CALL MPI_RECV(SS,l,MPI_REAL,

(I-1) ,STAG,COMM,STATUS,IERR)
SST=SST+SS

END DO
SUM= N

SST =SST/(SUM*SUM)
WRITE(6,123)SST

123 FORMAT(F15.9)
ELSE

CALL MPI_SEND(SS,1,MPI_REAL,0,STAG
1 , COMM, IERR)

END IF
END=MPI_WTIME ()

(MYPE. EQ. 0)

1 WRITE(*,*) 'ELAPSED TIME ',END-START
CALL MPI_FINALIZE(IERR)

END

8 Parallelising the geographical
analysis machine using MPI

This chapter focuses on the task of recocling the GAM for MPI. It examines the
design issues and cliscusses some of the alternative ways of exploiting the paral
lelism in the GAM. It does not matter that you do not ca.re what the GAM
does or is; it merely provides a good case study for learning more about how
MPI is used.

8.1 A data parallel GAM using MPI

The geographical analysis machine (GAM) is very simple to program, as it con
sists of a series of five nested DO loops. In Chapter 5, it was vectorised, even
though at the end of the day the tremendous increase in its performance came
from reducing the arithmetic rather than from vectorisation. In Chapter 6, it \.vas
converted into a multi-tasking program but not into either a shared DO loop or
a data parallel form, because it was judged to be unsuitable for these parallel
programming models. Indeed, the GAM is inherently far more suitable for a
form of parallel processing that can effectively exploit tl1e two-climensional inde
pendent spatial nature of tl1e underlying search. Historically, tl1e early GAM/l
was run on a vector parallel machine only because tl1ere was no practical alterna
tive in tl1e mid-1980s, and tl1e algoritl1111 had to be 'shoe-horned' to become
vectorised when its natural parallelism was quite different. In principle, tl1e
GAM needs an MIMD parallel-programming mode! , <rnd tl1is makes it a good
example on which to practise your message-passing programming using MPI.

The initial plan is to pa.rallelise GAM using the MPI equivalent of a shared
DO loop approach. Later on, tl1e flexibility inherent in MPI is used to demon
strate a better, more efficient and far more general approach to parallel pro
gramming. The immediate clifficulty here is tl1at wh.ile tl1e simplest GAM code is
massively data parallel (and highly vectorisable) it is also hopelessly inefficient
from a performance point of view. This may be a good rime to reread Chapter 5
and recollect how tl1e performance went down from 9 days to about 9 minutes .
However, tl1ese improvements totally destroyed tl1e nice data parallel nature of
tl1e code and because of tllis it was subsequently decla.red inappropriate for
shared DO loops on a shared-memory maclline. Here attention is focused for
teaching purposes on tl1e parallel elegance of tl1e original code. Of course, if you

212 Parallelising the geographical anal)•sis machine using MPI

have access to a 512-processor parallel computer, and if each processor is about
the same speed as a Cray T90 vector processor, then 9 days is reduced to about
30 minutes. Not bad, despite the algorithm being so hopelessly inefficient.
However, this is also 'not good', because the original algorithmic inefficiency
bas been ossified. While it now appears to be a triumph of parallel computing, it
is in fact a good example of a problem where with a little more effort about
1000 rimes more science per hour could have been obtained. The pseudo code
for tllis hopeless inefficient data parallel GAM is as follows:

LOOP 0:

LOOP 1:
LOOP 2:
LOOP 3:
LOOP 4:

DO ITER = 1, MAX IT
if ITER exceeds 1 tl1en create a random data distribution
DO RADIUS= RAD_MIN, RAD_MAX, RAD_INC
DO CY = MIN_y, MAX_y, RADIUS*0.2
DO ex = MIN_X, MAX_X, RADIUS*0 .2
Compute population and cancer counts for ail points (X, Y)
inside a circle centred at CX, CY witl1 radius RADIUS, write it
out if tl1ere are indications of an excessively high cancer rate .

If 1991 census enumeration district data for tl1e UK are used, ilien tllis
involves the following Fortran code :

OBSP=O. 0

OBSC=O. 0

DO I=l, 145716

DIS= (X(I) - CX) ** 2 + (Y(I) - CY) * * 2

IF (DIS.GT.0.0) DIS = SQRT (DIS)

IF (DIS.LT.RADIUS) THEN

END DO

OBS P=OBSP+P (I)

OBSC=OBSC+C (I)

ENDIF

Please note tl1at tllls version of tl1e GAM is purely for illusu·ative purposes. If you
wrote tllls code for HPF tl1en it would run very well on a parallel supercom
puter. It may well produce tl1e most amazing levels of parallel performance, but
it is still hopelessly inefficient compared witl1 what can be done, as has already
been demonsu·ated in Chapter 5, and much better non-data parallel codes for
tl1e GAM are described later on. The value of tl1e present code fragment is to
illusu·ate a data parallel approach using MPI and partly as a warning of tl1e dan
gers of unthinkingly porting a hopelessly inefficient serial code.

Back to tl1e current code story. In a typical GAM cluster hunt involving data
for tl1e UK, Loop 0 would be run only once due to computer rime resu·ictions
witl1 this code . Ideally, we would lilce to run it many rimes as tl1e purpose would
be to test for differences bet\veen GAM results for tl1e observed 'real' data and
results produced for data generated under a null hypotl1esis, for instance tl1at tl1e

Where is tlie parallelism in the QAM? 213

data are random. The quality of tl1e science partially depends on being able to
show tl1at any unusual patterns or data abnormalities detected by tl1e GAM are
not purely due to chance occurrence. The principal consu·aint here is ilie com
puter rime needed to run ilie GAM 99 or 499 or 999 or more rimes. Hence one
reason for wislling to parallelise it. The otl1er DO loops reflect tl1e spatial reso
lution of tl1e spatial search for localised clustering. The assumption here is t11at
circle sizes (and hence pattern) are in t!K range 1-50 lm1 (Loop 1). The otl1er
DO loops reflect tl1e dimensions of tl1e study region (Loops 2 and 3) and tl1e
amount of data (Loop 4). In tl1e code being examined here, Loop 1 would be
performed fifty rimes, Loop 2 a maximum of about 6000 rimes but variable
depending on radius size, and Loop 3 a maximum of about 3250 rimes. As a
result, Loop 4 would be executed about 30 million rimes. In Chapter 5, tllis
code was estimated to talce 9 days to nm. The question now is: how much bet
ter will it do under MPI?

8.2 Where is the parallelism in the GAM?

The first task is to 'find' the parallelism. Remember tl1e different degrees of
parallelism tl1at exist; see Chapters 3 and 4. This would result in tl1e following
classification:

1 Loop 0 is defined as highly coarsely grained parallelism because each itera
tion is with a different data set (based on eitl1er observed or randonlised
data) and is tl1erefore completely independent of any otl1er. Tllis is also
what you would call 'embarrassingly parallel'. That is, tl1e su·uchlre of tl1e
program is such tl1at you need do notlling to it to malce it parallel. Provided
tl1at MAXIT is some integer multiple of tl1e number of processors then it
would be llighly efficient from a parallel computing point of view, albeit
totally inefficient from an algoritl11nic perspective. However, ail you would
need to do to obtain maximum algoritl1111ic efficiency as well is to replace
tl1e previous code for Loops 1 to 4 by tl1e far more efficient version
described in Chapter 5. However, tllis is too easy, and it is best for current
purposes not to pursue tllis option fürther, because not ail problems are as
conve11Îently su·uctured as tllis GAM. Also, tl1e number of simulations you
might wish to use may not be an integer multiple of tl1e number of proces
sors . Hence if you were using some form of Monte Carlo sig11ificance test
tl1at needed only 100 iterations tl1en you could end up witl1 a large numbers
of idle processors . On the Cray T3D, tl1e nearest power of 2 to 99 is 128,
resulting in t\venty-11ine idle processors. So tllis very coarsely grained level
of parallelism is a little too coarse and clumsy. Wllile you could get away
witl1 it, it might be difficult to justify tl1at tl1e quality of tl1e resulting science
is so heavily dependent on tl1e precise number of processors you are using.

2 Loop 1 is also embarrassingly parallel but at a Jess coarse level. The problem
now is tl1at tllis particularly DO loop will probably only ever be repeated
fifty rimes or less on practical applications, which suggests tl1at it would run

214 Parallelising the geographical analysis machine using MPI

best on a machine vvhere the number of processors matched this DO loop
count or some integer multiple of it. This is probably only useful on
machines with small numbers of processors. Again, you cannot really make
your GAM search totally dependent for its parallel performance on the
number of processors you are using! Well you could, but it does not look
like good science . A much greater degree of application independence and
flexibility is needed.

3 Now Loops 2 and 3 are medium-grained parallel. If the GAM were to be
parallelised at below the Loop 2 level, th.en Loop 3 (DO loop CX) would
have to be spread over multiple processors . The problem now is that ail the
data would have to be stored on each processor (probably of little conse
quence today) but, more seriously, tl1e number of rimes each of tl1ese DO
loops is executed is variable because it is dependent on radius size. For
example, if MIN_X = 1, MAX_X = 1000, RAD_MIN = 1, RAD_MAX =

10, RAD_INC = l; see Table 8.1. This causes problems, because tl1e num
ber of processors is fi,\'.ed prior to tl1e start of tl1e run. So if 256 processors
are used, tl1en between 25 and 50 per cent of them would be idle for most
oftl1e time. For example, for a radius of 50 km tl1ere are only 100 DO loops
to farm out, so 156 processors would be idle. For a radius of 1 km, tl1e 256
processors would be busy for fifteen-sixteenths of tlK time and 152 idle for
one-sixteentl1. This is clearly better, altl10ugh tl1ese problems are avoided if
at ail possible, but when using a data parallel or shared DO loop approach
it is usually outside your control. Indeed, here is one of tl1e most com
pelling reasons for learning how to use message passing.

4 Loop 4 is obviously far more finely grained, and tlus is tl1e best bet for a
vector processing, shared DO loop and data parallel approach. The 145,716
iterations of tl1is DO loop could be readily spread across large numbers of
processors. This 145,716 reflects the data being used; here it is tl1e total
number of 1991 census enumeration districts in tl1e UK Tl1is number is
study region and application-dependent. It cannot always be relied on to be
as big as tl1is, but equally it could be an order of magnitude larger or
smaller.

Table 8.1 Loop 3 counts.

Radius

1
2
3
4
5

10
20
50

Nmnber oftiines
DO loop e:x:ecu.ted

5000
2500
1666
1250
1000

500
250
100

Loop 4 message passing 215

Nevertl1eless, despite tlus uncertainty as to tl1e precise size of tl1is DO
loop, on a shared-memory system witl1 relatively few processors tlus would
also be a good place to start. However, for a message-passing approach it is
far from ideal! It is too finely grained as there is probably insufficient com
putational work to farm out to large numbers of processors. Much will
depend on the speed of the processors, tl1eir number, tl1e amount of data
being processed and tl1e bandwidtl1 of tl1e interconnection along which tl1e
messages have to travel. It is not helpful to have algoritl1ms for parallel
machines witl1 a level of performance tl1at is highly hardware-specific if it
can be avoided. The reasons are discussed in the next section.

There must be a better way tl1at is not based on sharing out whole DO loops,
which creates inflexibility and makes performance application-dependent.
Fortunately, tl1ere is a better way that avoids tl1ese problems, but maybe it is use
ful to first su·uggle (a little) witl1 some of tlK less efficient alternatives. Weil, you
are supposed to be tlunking about how to parallelise tl1e GAM, not just reading
about how tl1e autl10rs did it (after a long su·uggle of their own) in an optimal
fasl1ion.

8.3 Loop 4 message passing

The obvions place to start is witl1 Loop 4 because tlus is where nearly ail tl1e
computation is concenu·ated in the original version of tl1e GAM. A message
passing data parallel version of tl1is loop could be implemented as follows . It is
assumed tl1at tl1ere are NP processors and tlut each processor has a different
approximately l/NPth share of tl1e data stored in its local memory. These exact
values for tl1e processor numbered MYID is stored in SIZE. We shall ignore how
tl1at was do ne as you should lmow how to do this by now (see Chapter 7 and
ilie spatial interaction model example). The following pseudo code could tl1en
be used:

DO I=l, SIZE (MYID)
DIS =(X(I) - CX)**2+(Y(I)-CY)**2
IF (DIS. GT. 0.0) DIS=SQRT (DIS)
IF (DIS. LT. RADIUS) THEN

END DO
C* Master Processor

OBSP=OBSP+ P (I)
OBSC =OBSC+C (I)
ENDIF

IF (MYID.EQ.0) THEN

C* Slave Processors

collect OBSP, OBSC from each
processo r and add together
to obtain a global sum

216 Parallelising the geographical ana l)•sis machine us ing MPI

ELSE

send OBSP, OBSC to master
END IF

Note that if NP = 100 and N = 145,710 then each processor computes an
OBSC and OBSP value based on its local memory share, with an average of
1,457 cases each. Also, each processor has almost an equal amount of work to
do, so load balancing is nota problem. From a computational perspective this is
a very efficient solution, provided that the work (i.e. DO loop) assigned to each
processor is sufficiently large and the number of processors not too numerous or
too fast in relation to tlle number of cases, otherwise Amdahl's law will talce its
revenge on you as the message-passing overheads may dominate tl1e run time.
The current solution certainly looks good, but all is not really that well at al!.

It has been repeatedly argued tl1at a very important design aim in message
passing is to minimise tl1e number of messages being passed around because tllis
reduces tl1e amount of usefu1 computation being performed. A processor wait
ing for a message is to all intents and purposes idle! Now let us calculate how
many messages are generated by this pseudo code if Loop 4 is executed 30 nlli
lion times. If there is only one processor (NP = 1), tl1ere are no messages as all
tl1e data are stored in the local memory of tl1e master processor. If tl1ere are two
processors (NP = 2), tl1ere are two messages (one send, one receive) for each
processor every time Loop 4 is executed. This will generate 30 million messages.
If tl1ere are 100 processors, tl1ere are now 3000 million messages being gener
ated! So tllis pseudo code has some very interesting properties from a message
passing mega-disaster point of view! The good aspect is that tl1e aritl1metic being
done on each processor decreases linearly witl1 tl1e number of processors. The
disastrous aspect is tlrnt tl1e number of messages being generated also increases
linearly with tlle number of processors! This is not what you ever wish to hap
pen. Witl1 tllis code, as tl1e number of processors increases so tl1e wall dock time
would initially decrease very rapidly but tl1en would start to increase even more
rapidly, until the entire machine was swamped by your messages .

By comparison, a Loop 3 level of parallelism would behave far better. Here
tl1ere is only one message per complete Loop 4 pass (i.e . 15 million) and more
importantly, this quantity is now independent of tl1e number of processors being
used. Performance would now scale linearly witl1 tl1e number of processors,
reaching a linlit set by tl1e overhead of handling 15 million messages, tl1e size of
the Loop 4 DO loop, and processor speed. It is dearly far more efficient, despite
the problems of variable-sized DO loop counts noted earlier, wllich could
reduce tl1e overall efficiency of tl1e program by some small but variable amount
tl1at may perhaps be ignored.

Nevertl1eless, suppose tllis loss of performance festers away in your mind. You
can no longer sleep at 1light! You have idle processors, uneven load balancing,
15 million messages, etc.; ghost-like figures of famous computer inventors
appear in your dreams to start telling you off; you are wasting rime. A para.lie!
greed for speed has gained hold of you. Tllis 'illness' is often only diagnosable

Sorne alternative message-passing schemes 217

retrospectively, when many l10urs have been spent fiddling around witl1 tllis or
tl1at section of code, or doodling whole new algoritl1111s tl1at may avoid the
problem, wllich by now may have assumed an importance to you that bears no
relationship to its real significance . Then before you lrnow it, several weeks have
flashed by and maybe your code is not much better tl1an before you started.
Ouch! Tllis 'greed for speed' can be painftù, or perhaps it is just a problem tlrnt
geographers may have. But let us continue, as it does seem to be quite prevalent.

8.4 Sorne alternative message-passing schemes

The Loop 3 parallelism was defulitely wortl1 having, but is tllis tl1e best tlrnt can
be done here? One possibility would be to switch the order of Loops 2 and 3,
keeping tl1e bigger range for tl1e urnermost one . This can be doue because a
basic defulition of parallel DO loops is whetl1er or not tl1e order can be changed
without changing tl1e logic oftl1e code . It can here, because there are no depen
dencies to worry about and the order in which tl1e results are generated is irrel
evant. While this helps a little, it still leaves tl1e idle processor problem largely
unresolved due to tl1e fact that tl1e DO loop counts are probably never going to
be exact integer multiples of tl1e numbers of processors . Any ideas?

Let us assume that tl1e 'greed-for-speed' syndrome has a füm hold on you and
you are unable to ignore it. So what can be clone about it? Well it is easy, or it
eau be when you have your 'parallel head switched on'! Start by rethinking the
problem. Remember tl1e basic design criteria for efficient message passing:

1 no dependency between the amount of message passu1g and tl1e number of
processors;

2 if possible no idle processors;
3 tl1e same numerical result regardless of how many processors are used (tl1e

latter is slipped u1 here as a gentle reminder tlrnt tl1e para.Ile! code has to run
faster, be scaleable, and still get tl1e 'correct' restùt; otherwise, it is a very
backward step!);

4 wall dock rimes tlrnt dimülish as the number of processors increase so that
you can achieve more science per hour and keep your sponsors happy; and

5 ideally a code tlrnt has been so cumlingly designed tlrnt it will continue to
perform well when eitl1er tl1e problem size changes or processor speeds
increase (or decrease) by a few orders of mag1litude .

One way of dou1g some of tllis is to malce Loop 4 into a subroutine called
CIRCLE; e.g. CALL CIRCLE (CX, CY, RADIUS). This is always a good idea,
since by reducing code dutter it leaves tl1e rest for you to concenu·ate your
attention on. Now tllis subroutine will be computed in parallel by each proces
sor able to run it, and each call currently talces an identical lengtl1 of time since
tl1e amount of computing being done in CIRCLE is constant irrespective of CX,
CY and RADIUS (albeit due to a gross inefficiency in tl1e algorithm, which
we shall ignore at present). So when tl1ere are NP processors, the aim is to run

218 Paml.lelising the geographical ana/.ysis machine using MPI

CIRCLE concurrently on NP processors each witl1 different CX, CY, RADIUS
values. This can be done as follows:

L= - 1

DO RADIUS = RAD_MIN, RAD_ MAX, RAD_INC

DO CY = MIN_Y, MAX_Y, RADIUS*0. 2

DO CX = MIN_X, MAX_X, RADIUS*0.2

L=L+l

XX (L) =ex
YY (L)=CY

RR (L) =RADIUS

IF (L.EQ. NP-1) THEN

CALL CIRCLE (XX(MYID), YY (MYID), RR (MYID))

L= - 1

END IF

END DO

END DO

END DO

C* finish off any residue

DO I=O, L

IF (MYID.EQ . I) CALL CIRCLE (XX(I), YY(I), RR(I))

END DO

This code would be run on al! processors. Note that XX, YY and RR are used
to store NP sets of circle values. When tl1ere is exactly one for each processor
tl1en CIRCLE is called. The only region of inefficiency is now due to idle
processors at tl1e end, where tl1ere is tl1e possibility of some unprocessed values
remaining in XX, YY and RR. Simple but neat! Run tllis code on a 256-proces
sor T3D and tl1e potential 8 days or so on one processor is now reduced to Jess
than one hour of wall dock rime. Ali the processors will be kept busy nearly al!
tl1e rime. However, dùs code is still not particularly efficient computationally,
as a considerable amount of unnecessary computation is going on, and it was
tl1e removal of this aritl1metic tl1at helped to speed up tl1e version of the GAM
in Chapter 5.

Some furtl1er comments are in order. Remember how in SPMD tl1e same pro
gram is run on each processor. If tl1ere <U"e 256 processors, tl1en ail the DO loops
not MYJD-dependent are run concurrently 256 rimes. There are also 256 iden
tical local copies of XX, YY, RR and L, ail computed in parallel. The only section
of this code tl1at is different on each processor is tl1e call to tl1e CIRCLE sub
routine, where tl1e use of the processor number (MYID) in tl1e calling statement
ensures tl1at each processor computes sometlling different here (unless you
create a 11Îce parallel bug, wh.ich results in each processor work.ing on identical
data!). Everytlling else is dupl.icated. What a waste, you tllink. Weil, maybe not,
since (1) it will probably take only a few seconds to do ail tllis duplicated work,
and (2) tl1e alternative of doing it on only one processor ;rnd tl1en sending out

Doing even better b)' task farming 219

tl1e XX, YY, RR values creates more message traffic and has al! but one of tl1e
processors idle wllile tllis is being done. With message passing (as witl1 early gen
erations of mainframe computer and current PCs) it is usually far quicker (and
hence better from an efficiency point of view) to do more computation and Jess
input/output/message handling. The duplication of effort seen here is merely
an unavoidable feature of tl1e SPMD rnodel of parallel programming. You
benefit because of its simplicity, and maybe it works 'well enough' anyway so
tlrnt you need not worry about it.

However, such niggling tl10ughts often gnaw away at your HPC nerves. How
'well' is 'enough'? Is it wortl1 u·ying for a factor of2, 10, 100 or even 1000 rimes
more speed? Should the far faster algoritl1111 described in Chapter 5 be ignored?
On tl1is occasion, tl1e 'greed-for-speed' syndrome is a real concern because it most
crit.ically affects tl1e amount of science you can do per hour of parallel processor
rime. How can you ignore the dramat.ic speeding-up in single-processor perform
ance obtained earlier? Weil, t11at latter issue is easily dealt witl1; just keep gtùet and
quote lots of megaflop/s speed rates to demonsu·ate hmv well tl1e data parallel
GAM now runs and tl1ere is a very good chance tlrnt no one will ever notice! But
really, tllis is not good enough, even ifit may be a common practice in otl1er areas
of computational science. Geographers need to demonsu·ate tlrnt they lrnow what
tl1ey are doing even if some ot!Kr HPC users may not! There is also a very good
reason. Remember Loop 0? The quality of tl1e science may need tl1e GAM to be
run many hundreds or tl1ousands of rimes . Whereas now tl1e single run rimes are
acceptable, tllink how much better it would be ifyou do 1000 Loop 0 passes in
tl1e rime tlrnt tl1e current code does it once.

8.5 Doing even better by task farming

It is rime to reassess the situation. What have we achieved so far? Well, tl1e
current data parallel program does quite well. It has tl1e following properties:

1 it keeps al! tl1e processors busy nearly al! tl1e rime;
2 each subroutine cal! talces an identical lengtl1 of rime, ensuring excellent

Joad balancing;
3 tl1ere is a mülimum amount of message passing; and
4 performance appears to scale 'Nell witl1 tl1e number of processors.

The principal problem is tlrnt purely for educational reasons we have success
fully parallelised a version of me GAM tlrnt earlier on we proved could be
speeded up by a factor of about 300. We could simply plug in the revised
metl1od, but me speed of tl1e parallel CIRCLE region would now be donli
nated by tl1e speed of tl1e slowest circle cal! among tl1e set of NP parallel calls.
Tllis may not matter much witl1 tl1e GAM because of tl1e systematic and hence
local nature of tl1e spatial search, but it might occasionally become very bad,
part.icularly at tl1e end of a nordùng row or when sea changes to land and
tl1ere is a sudden increase in workload. There is also another problem. The

220 Parallelising the geographical analysis machine using MPI

computing rime taken by the CIRCLE subroutine is no longer constant. Some
large circles take more rime than small circles, but the nature of the GAM spa
tial search will even this out since circle sizes change in a graduai and system
atic manner. However, the use of faster processors and/or the revised fast
spatial search algorithm will dramatically increase the amount of idle rime. The
computation performed in CIRCLE will be less than the rime taken to send
the circle coordinates to a processor. This could be fix:ed by sending not one
but many circle coordinates to each processor. However, this is not a good
solution, although it would work 'quite well'. lt provides a niggling source of
ongoing inefficiency fears. It would be nice if this problem could be avoided.
It can, and the answer is task farming.

A task farm is one of the simplest and yet most useful ways of decomposing
either data or a computational task for a parallel processor. Trewin (1998) gives
a good description, which we elaborate further and attempt to simplify the
interpretation. In general, a task farm approach works as before by dividing the
processors into master and slaves. The master processor controls the work, and
the slaves get on with what they are told to do. However, the master processor
is a 'cruel' taslanaster, and as soon as a slave processor reports that it has clone
its work, it is sent more to do. This is a very unfair society. Those slave proces
sors that do their work quickest are pmùshed by being given more work to do,
while others that talce longer to do their allotted task may end up being
pestered by the master processor far Jess . The good point is that the master
seeks to keep all the slaves working for as much of the rime as possible while
allowing for either unequal worldoad allocations (because it is hard to predict
in advance) or processors that opera te at different speeds, or even processors
being given different tasks to perform. The spatial interaction mode! used a far
simpler and equal work share for all forms of task farm due to its data parallel
nature.

This sounds easy enough in principle, but how easy is it to implement in
practice? Weil actually, it is not too bad. The basic plan of all task fanns is as
follows:

1 all sta.rt and determine processor number
2 if the processor number is 0 you are the master, so read in the data; then

master
(a) send a piece of work to each slave
(b) wait for a slave to fuùsh and then send it some more work
(c) when there is no more work, send a quit signal

3 if processor number is not 0, you are a slave
slave
(a) wait for task
(b) check if it is a quit signal
(c) if not

• do the work for the task
• send back a result or a message saying you have fu1ished

A task-farming QAM 221

(d) else
• quit

(e) wait again

And that really is all there is to it.

8.6 A task-farming GAM

lt should be noted that the simplest form of task farming sets one processor up
as the master processor, so only NP - 1 processors are now available to do the
real work. It matters little if there are 256 processors, but it matters much more
if tl1ere are only four! Here we apply tl1e simplest possible approach. Fortunately,
task farming is really quite straightforward and possesses what might be termed
an appealing neatness .

To recap, tl1e basic approach is to designate processor 0 (wlùch always exists)
as tl1e master and all tl1e otl1er processors (regardless of how man y tl1ey are) as
slaves. The idea is tlrnt tl1e master gives each slave a task to perform and tl1en
waits for any slave to complete its task and send back a result, at which point tl1e
master sends out some more work to tlrnt slave. Tlùs basic procedure is easily
applied to tl1e GAM. Consider tl1e following pseudo code:

If master processor tl1en
(a) compute a search location consisting of X, Y and R
(b) send out an X, Y, R to each slave processor
(c) repeat (c) and (d) until end ofsearch
(d) receive a result back from any slave processor
(e) send that slave anotl1er X, Y, R value unless none left

else you are a slave processor, so expect to
(a) receive X, Y, R or stop if told to do so
(b) call CIRCLE
(c) send result to mas ter
(d) go back to (a)

endif

AppendL\'. 8.1 contains tl1e Fortran code for tlùs approach. The code is explained
in plain English as follows.

Section 1 of tl1e code is run by all the processors and declares tl1e variables
and sets some constants as well as determining each processor's ID. In Section
2, the master processor reads in tl1e data. In tl1e GAM, all tl1e data are distrib
uted to each processor since tl1e data set sizes are now rarely too large to store
on a single processor. These data are copied frorn tl1e master processor to ail of
tl1e slaves in Section 3 of tl1e code using a broadcast command. Tlùs is a far
more efficient way of transporting tl1e data tlrnn looping over all tl1e processors
and doing the copy one processor at a rime. In Section 4, tl1e rnaster üùtially cal
culates some ranges and carries out some housekeeping. ln Section 4.2, tl1e

222 Parallelising the geographical anal)•sis machine using MPI

master starts to work through the available work (the circles loop) and initia tes
each slave in turn . Once ail the slaves have started (when IFLAG = the proces
sor number) the master goes into a receive and waits for any slave to send back
a reply (the probability). Wh en a message is received, the mas ter sends the next
circle to be processed out to the slave that sent the message and goes back to
waiting for the next message. When there are no more circles to be sent out, the
master exits the loops, see Section 5, and each slave is sent an X value of -1 to
tell it to exit. This is important, because you need to stop each processor when
there is no more work to be done, or they will wait indefinitely for data that will
never be sent and the encire job will stall. The slave's Foru·an code is shown in
Section 6: ail the slaves do is wait for incoming data, check if it is a quit signal
(-1) and then process the data they have been sent by calling CIRCLE or by
jumping out of the loop if they have been told to quit.

8.7 Improvements?

The only problem is that there are now four messages per circle, making a total
of 30 X 4 million, which is still rather a lot. The question, as ever, is how to
improve things? There are a number of possibilities:

1 Reduce the number of messages by a factor of three. You can send X, Y, R
as an array in a single message rather than as three separate messages. This
is useful, because the rime talœn to send a message is not constant; there is
a fixed cost (or latency) for each message and an exu·a cost related to its
length. Figure 8.1 gives a pictorial illusu·ation. The exact curve is machine
specific. The rime talcen may also depend on the particular processors being
used as well as being dependent on the interconnections and machine arclu
tecture. However, there is nothing we can do about tlus, so let us ignore it
and let tl1e computer scientists worry about such tl1ings .

2 You could send out more ilian one circle at a rime to each slave. However,
tl1is may be triclcy and error-prone to program. Nevertl1eless, tl1ere are two
ways of doing tlus.
(a) Semi out ch unies of CX to each processor - CY, CX_start, CX_ incre

ment, CX Number - altl10ugh you would have to be careful at tl1e end
of tl1e CX loop. The CX_Number can be varied to accommodate tl1is
aspect. IfCX_Number is 10 then tlus would reduce messages passed by
tl1at factor (to 4.6 million). An appealing feature of tlus strategy is tl1at
tl1e size of tl1e chunks could be dynamically varied witl1in a GAM run
(big for small circles, wluch are quicker to compute, and smaller for
larger ones, wluch require more computation). It could also be set to
best match a particular machine architecture (tl1e code could use circle
timing information to ensure a sufficiently large chunk size in order to
keep itself working at maximum efficiency). The latter is a little too
complex and is probably not necessary here, but it does at least illusu·ate
tl1e flexibility provided by MPI in provid.ing a platform for developing

Q)

E
i=

Message size

Improvements? 223

Figure 8.1 Time taken to send a message as a fonction of message size.

algoritl1ms iliat dynanucally optimise tl1eir performance on specific
hardware. Tlus is a very nice feature for an algorithm to possess . It is
really elegant. It also illusu·ates tl1e sort of tlunking tl1at is important if
you are to produce scaleable codes tl1at will "vork well on future HPC
maclunes.

(b) An even more radical possibility is to send out a complete CX loop to

each processor. Tlus would dramatically reduce tl1e number of mes
sages, probably by a factor of 1000 or so, but it may result in idle
processors near the end of tl1e run. Maybe tl1is does not matter.

3 You could consider extend.ing option (1) by having tl1e slaves save up tl1eir
results before sending tl1em back to tl1e master in a single long message.
However, tlus will not work, because the master only knows when a slave is
idle when a result message is received from it. Buffering messages is usually
a good idea, but not here.

The problem with man y of tl1ese suggestions is that tl1e slaves may be able to do
tl1eir processing faster tl1an new work can be handed out to them. This is
unlilcely to be a problem witl1 su·ategy 2(b) . However, 2(a) might be better
because tl1e parallelism is in smaller chunks.

The optimal answer may depend on how much computational work is per
formed witlun each GAM circle. Currently, tlus involves a statistical sig1uficance
test wluch Glll be eitl1er very fast (i .e. a Poisson probability) or very slow (i .e. a
bootsu·ap or Monte Carlo testing procedure). The amount of computational
work being performed here would cframatically increase if tl1e GAM were to be
extended to handle space-time effects or if GIS coverage permutations were
used to partition tl1e data witl1in each circle into homogeneous subsets; see

224 Parallelising the geographical analysis machine using MPI

Openshaw (1998), and Openshaw et al. (1999). If the computational worldoad
increases by orders of magnitude then the original method or option (1) would
be more than adequate to yield excellent results.

8.8 Loop 0 complications

If Loop 0 enters the picture, then many of these potential work distribution
problems will _ also be resolved. As has been noted, the GAM is embarrassingly
parallel at tlus Loop 0 level. Each iteration is independent of each other.
However, if tlùs is executed 1000 rimes, tl1en whatever task-farming strategy is
~1sed'. tl1e nm-i:ber of messages increases 1000-fold, and so does total comput
mg tune. Yet it may be important to be able to perform Loop O runs on some
data deemed to be especially critical. Indeed, an early criticism was tl1at tl1e
?AM res~ts were .a product of random data being subjected to multiple test
mg. For mstance, if you test 23 million circles tl1en at a sigiùficance level of
0.05 you would expect (on average) tl1at 23 million X 0.05 (1.15 million)
would be sigiùficant even in purely random data, altl1ough tlùs assumes tl1at
tl1e hypotl1eses are independent of each otl1er (wh.ich they are not, because
tl1ey overlap). Nevertl1eless, it is sometimes important to be able to dispel such
fears by computer simulation, particularly if tl1e application is considered to be
hypercritical or so sensitive tl1at you have to be 'sure' tl1at tl1e results are 'right'
(e.g. analysis ?f data for children witl1 a rare disease). You could even argue
tl1at tl1e quality of tl1e science in tl1e GAM depends on knowing that tl1e
observed patte~11s are unlikely to be a chance occurrence of tl1e sort Wcely to be
readily found 111 purely random data . Strateg)' 2(b) is now extremely viable,
~ecause tl1e amount of work to be distributed has greatly increased (by 1000
tunes), whereas _the idle processor period at tl1e end is the same as previously.
However, tl1ere is an even better possible strateg)'. If sufficient memory is avail
able, some or ail of tl1ese Loop 0 simulations could be moved into tl1e work
being ~su:ibuted. This increases tl1e amount of work being done, but by a fac
tor wluch is less tl1an tl1e number of simulations. For example, tl1e cost of run
mng GAM is essentially the rime taken by tl1e CIRCLE routine . If .instead of
each CIRCLE call producing a single case count it produces ten different val
ues at_a rime (one for each of ten simulated or real data sets), tl1en tl1e rime
taken is probably only a factor of two lùgher, whereas if Loop O is left as an
outer loop it is a factor of ten greater. Clearly, tlùs sti·ategy is a double winner:
~1ore work for each processor and a reduction in total run rime due to exploit
mg the ludden parallelism implicit in tl1e GAM. If tlùs is combined witl1
sti·ategy 2(a) or (b) tl1en tl1e best possible performances would be obtained.
However, tl1ere are possible problems due to memory resti·ictions. Each
processor would now need to hold a complete set of tl1e observed data, plus
100? or l?,OOO random simulations in local memory. This may not always be
possible wi~out some ingenu.ity being exhibited, Piz. reducing the storage
needs by usmg data compression and sparse mati"i.x metl1ods, or recompute
ratl1er tl1an store tl1e random simulations each rime.

Conclusions 225

8.9 Multiple task farms

There are always otl1er possibilities. Indeed, when do you stop? Most applica
tions can be programmed in several different ways, some more efficient than
otl1ers. Experience tends to be a useful guide as to tl1e possible 'best', otl1erwise
you end up ti·ying more tl1an one, particularly if tl1ere are concerns over per
formance. So let us examine anotl1er approach to Loop 0 using MPI. One such
metl10d would be to have multiple sets of masters and slaves, each working on a
different set of simulations. On a parallel machine witl1 512 processors tlùs is
often partitioned in varions ways, for example 64, 64, 128, 256 . Each can have
different users rumùng on it. However, you can also do tlùs yourself witlùn a
system processor partition. For example, suppose tl1at your GAM program does
not scale linearly witl1 tl1e number of processors but peaks at 64. Suppose also
tl1at tl1e admiiùsti·ators of tl1e maclùne encourage you to malce use of ail 512
processors (since it looks better to outsiders and helps to justify a bigger and
more powerful new machine every tl1ree years or so). What do you do? The
options are (1) run on 512 and ignore tl1e problem and maybe no one will ever
k.now or care; or (2) run on 512 processors but witl1 your GAM split into eight
separate sets of 64 processors . You do not gaii1 anytlùng you wo1ùd not get by
rurnùng it eight rimes on 64 processors, but 'by heck' it looks so much better to
outsiders. Tlùs multiple masters approach is priIKipally of value when perform
ance pealcs at a small number of processors.

8.10 More advanced MPI routines

The six basic MPI subroutines have so far served us well, so what about tl1e
other 227? Weil, you will probably never use most of tl1em. They largely reflect
tl1e lùstorical origins of MPI, in which seemingly each member of tl1e MPI
forum attempted to retain tl1eir favourite features from whatever message
passing system tl1ey had previously used! Sorne are extremely usefi.ù and will be
used in virtually every message-passing program you will write. This was tl1e jus
tification for tl1e choice of the original six. However, anotl1er five basic routines
now need to be added, maiiùy bec a use (1) they reduce tl1e amount of work you
have to do; (2) tl1ey are probably implemented in a maximally machine-efficient
way; and (3) they may reduce the number of errors you could potentially malce .
Table 8.2 lists tl1em. If you wish to know what tl1ey do and their parameters
tl1en read MPI manuals. You will need to anyway.

8.11 Conclusions

Tlùs chapter has shown you how to develop your knowledge of message passing
and apply it to tl1e GAM. The result is a most useful parallel code for a useful
spatial analysis tool. The text is verbose because we wanted to explain tl1e tllliùc
ing and some of tl1e tl10ught processes tl1at lie belùnd tl1e programming. Most
books fail to cover tl1ese aspects, but they are very important, especially when

226 Parallelising the geographical anal)•sis machine using MPI

Table 8.2 Five more basic MPI subroutines.

MPI_BCAST
MPI_GATHER
MPI_SCATTER
MPI_REDUCE
MPI_ALL REDUCE

you are t:rying to teach yourself message passing from scratch. You will probably
rediscover them and could add many additions, but by then you will have out
grown any need for tllis textbook.

Appendix 8 .1: GAM example

Key: ail processors execute
master only
slaves on.ly

c * SECTION 1
IMPLICIT NONE

#include <rnpi f.h>
INTEGER NCASE

PARAMETER (NCASE=lSO 000}

DOUBLE PRECISION OVERAT,XMINE,XMAXN,XMINN,XMAXE,
X OBSP,OBSC,RADIUS,CX,CY,
X PROB, RADSQ,

X X(NCASE},Y(NCASE},P(NCASE},C(NCASE},RADSQL,
X RADINC,RADMAX,RADMIN,POPMIN,CANMIN,THRESH,
X OBSPL, OBSCL

CHARACTER*lOO XYDATF ,PCDATF ,OUTFIL
INTEGER I,LOOP, ICOL,IROW,IFLAG,TARGET,MYCOMM
INTEGER IER,NP,MYID,STAT(MPI_STATUS_SIZE} ,ITAG,

X MYSIZE,PSIZE,RTAG
DOUBLE PRECISION START,END

INTEGER TOTCAL,TOTDAT,TOTNCS,TOTNHY,STEP,ID,N,
X MINN,MAXN,MINE,MAXE,NTIMES,NCALC,NDAT,
X NCALS, NHY,
X N2

COMMON IAN/X,Y,P,C,THRESH,POPMIN,CANMIN,NCALC,
X NHY,NDAT,NCALS

C * START UP MPI

CALL MPI_INIT(IER}
MYCOMM=MPI_COMM_WORLD

CALL MPI_COMM_SIZE(MYCOMM,NP,IER}
CALL MPI_COMM_RANK(MYCOMM,MYID,IER}

START=MPI_WTIME (}

ITAG= l
RTAG=2
IF(MYID.EQ .0} THEN

C SECTION 2
C ONLY THE MASTER NEED DO THIS BIT

WRITE(6,78001}

QAM example 227

7800 1 FORMAT{'*GEOGRAPHICAL ANALYSIS MACHINE '
X , 'GAM/1 (FEB 1997) ' //}

C * STEP 1. READ DATA===============

c

c

c
c ..

* SET CONSTANTS

* READ INI.FILE
OPEN(UNIT=l,FILE='garnfiles.dat',

X FORM= 'FORMATTED' ,
X STATUS= 'OLD'}

* READ USER DATA FILE NAMES
THIS FILE CONTAINS X,Y DATA

READ(l,10001) XYDATF
C.. THIS FILE CONTAINS POP AT RISK AND COUNT OF REAL
C CASES

READ(l,10001) PCDATF
10001 FORMAT(A}

C * GET OUTPUT RESULTS FILE NAME

c

READ(l,10001) OUTFIL
CLOSE(UNIT= l,STATUS='KEEP'}

* READ X-Y DATA
WRITE(6,6707} XYDATF

6707 FORMAT('*USER INPUT X,Y FILE IS; ',A}
OPEN(UNIT=l,FILE=XYDATF,

X STATUS='OLD' ,
X FORM='FORMATTED'}

DO I=l, NCASE
X(I}=O.O
Y(I}=O.O

END DO
N=O

228 Parallelising the geographical anal)•sis machine using MPI

999
123

DO I=l, NCASE

READ(l,*,END=999) ID,X(ID),Y(ID)
N=I

END DO
WRITE(6,123) N

FORMAT(SX, '*EOF AT CASE NUMBER' ,IlO)
CLOSE(UNIT=l,STATUS='KEEP')

c * NO DATA READ?
IF(N.EQ.O) STOP 1

C * READ POPULATION AND OBSERVED CANCER DATA
WRITE(6,6708) PCDATF

6708 FORMAT('*USER INPUT DATA FILE IS; ',A)
OPEN(UNIT=l,FILE=PCDATF,

X STATUS= 'OLD',
X FORM= 'FORMATTED')

DO I=l,NCASE
P(I)=O.O
C(I)=O.O

END DO
N2=0

DO I=l, NCASE

READ(l,*,END=l99) ID,C(ID),P(ID)
N2=I

END DO
199 WRITE(6,l23) N2

CLOSE(UNIT=l,STATUS='KEEP')

c

c
c

ENDIF

END OF MASTER BLOCK

SECTION 3

BROADCAST DATA TO SLAVES

CALL MPI_BCAST(N,l,MPI_INTEGER,0,
X MPI_COMM_WORLD,IER)

CALL MPI_BCAST(N2,l,MPI_INTEGER,O,
X MPI_COMM_WORLD,IER)

CALL MPI_BCAST(X,NCASE,MPI_ REAL,O,
X MPI_COMM_WORLD,IER)

CALL MPI_BCAST(Y,NCASE,MPI_REAL,0,
X MPI_COMM_WORLD,IER)

CALL MPI_BCAST(C,NCASE,MPI_REAL,0,
X MPI_COMM_WORLD,IER)

CALL MPI_BCAST(P,NCASE,MPI_REAL,0,

c

c

c

8

c
c

c

X MPI_ COMM_WORLD,IER)
*NO DATA READ?
IF(N2.EQ.0) STOP 2
* FILES DO NOT MATCH
IF(N.NE.N2) STOP 3

MYSIZE=N/NP
PSIZE=N/NP

QAM example 229

IF(MYID.EQ.NP-1) MYSIZE=MYSIZE+(N-((N/NP)*NP))
* GO THRU DATA AND PRODUCE COUNTS
OBSPL=O. 0
OBSCL=O. 0
DO I=l,N

OBSCL=OBSCL+ABS(C(I))
OBSPL=OBSPL+ P (I)

END DO
IF(MYID.EQ.O) THEN

WRITE(6,8) N,OBSPL,OBSCL
FORMAT(

X ' *NUMBER OF INPUT DATA RECORDS: ',I8/
X ' *TOTAL POPULATION AT RISK: ',Fl0.0/
X ' *TOTAL CASES ',Fl0.0)

ENDIF
IF(OBSPL.EQ.0.0.0R.OBSCL.EQ.0.0)STOP 3
OVERAT=OBSCL/OBSPL

* FIND MIN AND MAX X,Y VALUES TO DEFINE SEARCH
REGION

XMINE=999999999.0
XMINN=999999999.0
XMAXE=O. 0
XMAXN=O. 0

* DATA ARE IN 1 KM UNITS
DO I=l,N

XMINE=DMINl(XMINE,X(I))
XMINN=DMINl(XMINN,Y(I))
XMAXE=DMAXl(XMAXE,X(I))
XMAXN=DMAXl(XMAXN,Y(I))

END DO

IF(MYID.EQ.0) THEN
C SECTION 4. 1

WRITE(6,7123) OVERAT,XMINE,XMAXE,XMINN,XMAXN
7123 FORMAT(

230 Parallelising the geographical analysis macliine using MPI

c

c

X

X

X

X

X

X

' *GLOBAL INCIDENCE RATE PER POPULATION '
, 'AT RISK IS ' , F12. 8 /
' *MINIMUM EASTING IS' ,Fl2 .l ,
' MAXIMUM I S' ,Fl2 . 1 /
' *MINIMUM NORTHING IS ' ,Fl2.l,
' MAXIMUM IS' , Fl2. 1)

ENDIF
MINN=XMINN-1 . 0
MINE=XMINE-1 . 0
MAXN=XMAXN+l . 0
MAXE=XMAXE+ l . 0

* STEP 2. SET SEARCH PARAMETERS================

* CIRCLE RADII ARE IN KM
RADMIN=lO. 0
RADMAX=lO . 0
RADINC=l. 0

C * SELECT PROBABILITY THRESHOLD

THRESH=O. 005

C * SET MINIMUM CIRCLE SIZE
POPMIN= l OO. 0

C * SET MINIMUM CANCER COUNT SIZE
CANMIN=2. 0
IF(MYID .EQ.0) THEN

C * WRITE SEARCH PARAMETERS OUT
WRITE(6,76541) RADMIN,RADMAX,RADINC,POPMIN

76541 FORMAT('*MINIMUM CIRCLE RADIUS IS',
X Fl0.3,' lKM'/

X '*MAXIMUM CIRCLE RADIUS IS' , Fl 0 . 3, ' 1 KM' /
X '*C I RCLE INCREMENT SET TO', F l O. 3, ' 1 KM' /
X '*MINIMUM POPULATION SIZE IS ' ,Fl0.0)

WRITE(6 ,78234) THRESH
78234 FORMAT(' *SIGNIFICANCE THRESHOLD SET AT',

X Fl2.6)

c
ENDIF
* OTHER GLOBAL INITS
TOTCAL=O
TOTDAT = O
TOTNCS = O
TOTNHY=O

c
c

c

c

c

QAM example 231

* CONVERT ALL POPULATION COUNTS INTO EXPECTED

VALUES
DO I = l, N

P (I)=P(I) *OVERAT

END DO

* RESET MINIMUM VALUE
POPMIN=POPMIN*OVERAT

* SET INITIAL RADIUS FOR CIRCLES

RADIUS =RADMIN-RADINC

* COMPUTE NUMBER OF CIRCLE SIZES TO BE EXAMINED

NTIMES= (RADMAX-RADMIN) /RADINC+l . 0

IF(MYID.EQ.0} THEN

C SECTION 4 . 2

c

c

c

c

c

c

MASTER BLOCK
IFLAG=l

* OPEN OUTPUT FILE
OPEN(UNIT=9,FILE=OUTFIL, STATUS='UNKNOWN ',

X FORM='FORMATTED')

* STEP 3 . CIRCLE SIZE LOOP========= = =========

* ******* **CIRCLE SIZE LOOP STARTS HERE

DO LOOP=l,NTIMES
* SET CIRCLE RADIUS

RADIUS=RADIUS+RADINC
RADSQL=RADIUS*RADIUS

STEP=RADIUS
IF(STEP. EQ.0) STEP=l

NCALC=O
NDAT=O
NCALS=O
NHY=O

* STEP 4. GRID SEARCH: NORTHING LOOP ==== = =====

DO 100 IROW
CY=IROW

MINN, MAXN, STEP

232 Parallelising the geographical analysis machine using MPI

c

c

c

c
c

c
c

X

X

X

X

X

X

* STEP 5 . GRID SEARCH: EASTING LOOP

DO 200 ICOL = MINE , MAXE, STEP
CX=ICOL

== == ========

* SKIF IF POPULATION COUNT IS TOO SMALL
IF(OBSP. LT . POPMIN)GOTO 200

* SKIF IF TOO SMALL TO BE OF INTEREST
IF(OBSC.LT.CANMIN) GOTO 200
NDAT=NDAT+ 1
IF(IFLAG . LT.NP) THEN

IF WE ARE STARTING WE SEND TO THE NEXT PROCESSOR
IN LINE

I FLAG= IFLAG+ l
TARGET=IFLAG

CALL MPI_SEND(CX,l,MPI_REAL,TARGET,ITAG,
MYCOMM,IER)

CALL MPI_SEND(CY, l ,MPI_REAL,TARGET ,ITAG,
MYCOMM, IER)

CALL MPI_SEND(RADSQ,l,MPI_ REAL,TARGET,
ITAG,MYCOMM,IER)

CALL MPI_SEND(OBSP,l,MPI_ REAL,TARGET,
ITAG,MYCOMM,IER)

CALL MPI_SEND(OBSC,l,MPI_REAL,TARGET,
ITAG,MYCOMM,IER)

ELSE

ONCE WE' VE STARTED ALL THE SLAVES WE WAIT FOR AN
ANWSER FROM ANY SLAVE

CALL MPI_RECV(PROB,l,MPI_REAL,

MPI_ANY_ SOURCE,RTAG,MYCOMM
X ,STAT, I ER)

C NOW WE FIND OUT WHO THE MESSAGE WAS FROM
TARGET=STAT(MPI_ SOURCE)

c * CALCULATE SIGNIFICANCE LEVEL

NHY=NHY+l

IF(PROB . LT . THRESH) NCALS=NCALS+l
C AND THEN SEND OUT THE NEXT CIRCLE TO THAT SLAVE

CALL MPI_ SEND(CX,l,MPI_REAL,TARGET,
X ITAG,MYCOMM,IER)

CALL MPI_SEND(CY,l,MPI_REAL,TARGET,
X I TAG,MYCOMM,IER)

CALL MPI_SEND(RADSQ,l,MPI_REAL , TARGET,
X ITAG,MYCOMM,IER)

CALL MPI_SEND(OBSP,l,MPI_ REAL,TARGET,

X

X

QAM example 233

ITAG,MYCOMM, IER)
CALL MPI_ SEND(OBSC,l,MPI_ REAL , TARGET,

ITAG,MYCOMM,IER)

ENDIF
C * END OF EASTING

200 CONTINUE
C * END OF NORTHING

100 CONTINUE

c
c
c

X

78221
X

X

X

X

X

X

X

X

X

c

END OF SEARCH LOOP FOR GIVEN CIRCLE RADIUS

WRITE(6,7822l)RADIUS,STEP,NCALC,NDAT,

NHY,NCALS
FORMAT(40(1H-)/' *RADIUS=' ,Fl2.2,

'KM WITH STEP OF' ,I6 ' KM'/

lH , SX,
'*NUMBER OF SITES GENERATED ',IlO/

lH , SX,
'*NUMBER OF SITES EXAMINED ',IlO/

lH , SX,
'*NUMBER OF HYPOTHESES TESTED ',IlO/

l H ,SX ,
'*NUMBER OF SI GNI FICANT CIRCLES' , IlO)

* FORM GLOBAL STATS
TOTCAL = TOTCAL+NCALC
TOTDAT=TOTDAT+NDAT
TOTNHY = TOTNHY+NHY
TOTNCS = TOTNCS+NCALS

C * GO BACK AND DO ANOTHER CIRCLE SIZE

END DO
C SECTION 5

DO I =l,NP
C ALL CIRCLES HAVE BEEN ALLOCATED SO START

C TO SEND OUT QUIT SIGNALS
CALL MPI_RECV(PROB,l,MPI_REAL,

X MPI_ANY_ SOURCE,RTAG,MYCOMM,STAT

X , IER)
TARGET= STAT(MPI_SOURCE)

234 Parallelising the geographical anal)•sis machine using MPI

CALL MPI_SEND(-1.0,l,MPI_REAL,TARGET,
X ITAG,MYCOMM,IER)

END DO

C**
C * END OF ALL RUNS

C**
END = MPI_ WTIME ()

WRITE(*,*) 'TIME = ' (END-START)
WRITE(6,887) TOTCAL,TOTDAT,TOTNHY,TOTNCS

887 FORMAT(

X '0********** END OF GAM RUN************'/

X lH , '*TOTAL SITES GENERATED IS' ,IlO /
X lH, '*TOTAL SITES EXAMINED ',IlO /
X lH , '*TOTAL HYPOTHESES TESTED ',IlO/
X lH, '*TOTAL SIGNIFICANT CIRCLES ',IlO)

C END OF MASTER BLOCK
ELSE

C SLAVE BLOCK
C SECTION 6

1223 CONTINUE
c SLAVES JUST WAIT FOR CIRCLES TO BE SENT TO THEM

CALL MPI_RECV(CX,l,MPI_REAL,0,ITAG
X ,MYCOMM,STAT,IER)

IF(CX.LT.0) GOTO 234

c IF ex IS NEGATIVE THEN IT'S A STOP SIGNAL so WE EXIT
C THE LOOP

CALL MPI_RECV(CY,l,MPI_ REAL,0,ITAG,
X MYCOMM, STAT, IER)

CALL MPI_RECV(RADSQ,l,MPI_REAL,0,
X ITAG,MYCOMM,STAT,IER)

CALL MPI_RECV(OBSP,l,MPI_REAL,0,
X ITAG,MYCOMM,STAT,IER)

CALL MPI_RECV(OBSC,l,MPI_REAL,0,
X ITAG,MYCOMM,STAT,IER)

CALL CIRCLE(CX,CY,RADSQ,OBSP,OBSC,PROB)
CALL MPI_SEND(PROB,l,MPI_REAL,O,

X RTAG,MYCOMM,IER)
GOTO 1223

C END OF SLAVE BLOCK
ENDIF

234 CONTINUE

CALL MPI_FINALIZE(IER)
STOP
END

9 Optimising performance and
debugging hints

This chapter offers practical advice and suggestions as to how you can optimise
performance and squash nasty parallel bugs. Both are important and will occupy
most of the software development rime associated with many HPC applications.
Probably the more worrisome aspect is the difficulty of knowing or proving that
the results obtained from HPC are reasonably correct.

9 .1 Introduction

Converting your code for a parallel processor is just the start of a potentially long
drawn-out 'advent:ure' (some would say 'st:ruggle' or 'war') bet\veen man (or
woman) and machine (or compiler) in what at rimes appears to be a ceaseless fight
to either get code to work or extract the last factor of two of improvement in wall
dock rimes. It may not be worth the extra effort, but if you really do need paral
lel hardware in order to obtain maximum performance for your HPC application;
if you have a research project that will 'fail' without it, or is being slowed clown by
extended run rimes that are either infeasible or so large as to appear embarrass
ingly ridiculous; if you want to malce sure that your code now runs at speeds you
would get only on a multi-teraflop machine in five years rime; or ifyou are just fas
cinated by the thought of making it run much faster: this chapter reports some of
the authors' experiences and struggles in this area of parallel processing. This
quest for HPC speed may involve not just the world's fastest and biggest and most
expensive HPC hardware, it could also involve the world's cheapest! One of the
practical attractions of message-passing codes (such as MPI) is that you can down
load (free!) versions that will allow you to create your own virt:ual parallel super
computer from networked Unix workstations or even PCs. lndeed, workstation
farms are probably the principal way whereby industrial organisations exploit
HPC at present. Ifthey can, so can you!

Demel notes that 'to get full speed out of the architecture, one must exploit
parallelism, pipelining, and locality. These are ubiquitous issues at all levels of par
allel computing . .. It is a challenge to juggle all three simultaneously and get
good performance' (p.l lecture 3, CS 267, 1996). The challenge also involves the
reorganisation of algorithms to enhance all three. The danger is that too much
attention is paid to optimisations that are unique to particular hardware and

236 Optimising performance ancl clebugging hints

hence are not generic. These are issues even with serial computers, as it is good
advice for any RISC maclùne as weli as parallel ones. So here is a golden rule of
thumb: maybe you should always assume that the parallel HPC hardware that you
are using today will be gone or different (faster and bigger) tomorrow; but your
code and algorithms need not be so short-lived. Sig1ùficant codes have long lives,
and their underlying algorithms may last even longer! The most enduring per
formance optimisations are therefore those 'written' into the design of parallel
algorithms and are not a particular rime- stamped lùstorical bit of completely
machine-specific code optimisation. On the other hand, it is important not to
ignore any local changes that help, particularly if the 'equivalent' exists on other
maclùnes.

9 .2 First optimise yom algorithm rather than fiddling
with code

As Chapter 5 demonstrated so well, the best way of optimising performance so
that code runs faster is to optimise the performance of the algorithm by
retlùnking it to müùmise tl1e amount of aritl1metic performed and to localise
memory reads and writes. Each rime you assign a value to a variable tl1ere is a
memory read and a write (or at least a register-to-memory read/write operation).
Imagine tl1at your memory is equivalent to reading and writing a randomly
orga1ùsed disk file and you wili readily appreciate tl1e potential performance
issues. Over tl1e last decade and for tl1e next decade (or two), arithmetic speeds
are increasing (and have increased) man y rimes faster tl1an rnemory reads and
writes . Getting or putting values from or to memory is now almost as bad (rela
tively speaking) as reading or writing disk files was 10-20 years ago. Memory,
even local memory, is now a slow storage device cornpared witl1 tl1e speed of com
putation and most other operations . So redesigning algoritl1rns to hancile fast
modern nùcroprocessors is a realiy good idea. By comparison, rearranging DO
loops and cache fiddling offer fairly trivial gains .

There is a danger of what can be termed 'algoritl1mic complacency'. Tlùs line
ofreasmùng goes as follows: 'Weil it worked on supercomputer X. lt was after al!
designed for tl1at purpose ten years ago. So let's port it 'as is' on to latest maclùne
Z'. However, tlùs can be disastrous! The GAM case study offers a useful lesson
here. The original problem was put into a vector form . Maximum use was made
of local subroutines optimised for tl1e hardware, and lùstorically acceptably good
levels of performance were achieved. However, tlùs was in tl1e late 1980s! The
same code was much later ported on to the Cray J90 and worked at about twice
tl1e previous performance level. The code was also ported to tl1e Cray T3D, and
it also worked fairly well on up to 64 processors, which basically gave it a slight
speed-up compared witl1 tl1e Cray J90 . But al! was not well! The problems were
as follows:

1 tl1e algorithm did not scale beyond a modest number of processors;
2 large parts of tl1e original code are no longer needed (tlùs related to the use

First optimise your algorithm rather tlian ficlcl/.ing with code 237

of data compression necessary to fit tlie data on to 1 megaword of memory
on now extinct hardware);

3 tl1e original algoritl1m was highly complex and efficient, altl10ugh some of
tl1e efficiency was lost due to tl1e need for additional code to enhance vec
torisable operations; and

4 the algorithm needed retlùnking in tl1e HPC environment of now ratl1er
tl1an then (when it was probably tl1e best that could be managed).

The results shown in Chapter 5 illustrate what an algoritl1mic retlùnk can aclùeve.
The lesson here is tl1at porting old code largely unchanged on to parallel maclùnes
is a recipe for potential disaster, albeit a largely invisible one. For instance, would
anyone have known tl1at tl1e original GAM was now so hopelessly inefficient? No,
sacily they would not, except tliat tl1e quality of the science tl1at could have been
performed using it would have been much reduced. Despite tl1is latent ineffi
ciency, tl1e scientific case made to support tlùs code now would be as strong (or
even stronger) tlian it was then! The case would be stronger because of the wider
proliferation of important spatial data that needs to be analysed! The code could
be altered to improve its scaling performance but leaving its algoritl1lllic deficien
cies largely untouched. We wonder how many otl1er codes successfully ported on
to parallel hardware are similar to tl1e original GAM.

If you are naive, it al! appears ever so easy! You move your code to a multi
processor maclùne. You emit a big sigh of relief when it works after two minor
changes . You plug in locally optimised subroutines for linear algebra, etc. lt goes
faster. Wow! A good rime to go to the pub and celebrate. But what have you really
aclùeved? If tl1e machine is 100 rimes faster tl1an previously, did you get a 1 OO
rimes speed-up? Of course not; you never do. But did you attain 50 percent? No!
What about 30 percent? No? Weil, what about 10 percent? Yes! Weil done. Your
port was certainly not worth tl1e effort! If you do not believe tlùs tl1en try tl1e
following simple test. Talœ your serial code and run it on a multi-processor box,
selecting the appropriate parallel compiler options. Now run it. 'Oh! It took
longer on four processors tl1an on one! Weil, let's not botl1er! Tlùs parallel stuffis
not wortl1 while.' However, you merely need to tllli1k about redesigning your
algoritl11n to enhance its parallel content. lt has been emphasised that it is you
and not tl1e compiler who will succeed best at tlùs task, because it requires an
algorithmic retlùnk ratl1er tl1an code optimisation.

Sorne other rules of tlrnmb apply here: the larger tl1e code, tlie harder it is to

change; the aider the code the harder it is to change, because the original
authors are either dead or retired; tl1e degree of commenting in the code is
probably not too critical beyond a certain mÎIÙmum point. Perhaps al! code not
explicitly written for parallel hardware should have a 'best before' date stamped
on it. Maybe tl1e new mille111ùum should have been a good code self-destructs
tl1reshold!

In case you are wondering, how an algorithm is optimised is seldom straight
forward. Basically, it is a process of trial and error, relentless experimentation,
lateral tllliùcing, and even good luck. Oh yes, and common sense also helps .

238 Optimising performance and clebugging hints

9.3 Now start to fiddle

If you cannot improve your algorithm then start to fiddle vvith the code. Quite
often, new algorithms emerge from code fiddling; your brain just sort of cames
up with it! The following steps are sometimes usefol:

Step 1: Benchmark the original code on a suitably representative but conve
niently sized problem.

Step 2: Profile tl1e code to detect hot spots: tl1ese are tl1e parts of your program
where most time is spent. There is no need to optimise a subroutine
which talces, for example, 1 per cent of tl1e total run time; concentra te
on tl1e largest parts. If a subroutine is called millions of times, even a
small saving can be very important. Use your lrnowledge of what tl1e
algoritl1m does to improve its performance, but witl1out destroying its
generality. For example, ifyou lrnow tl1at a fonction will be computed [(
million times, tl1en can you update it ratl1er tl1an recompute it? This
st.rategy dest:roys megaflop rates but can speed up an application by
tl10usands oftimes. It is easier not to do tlus, but maybe tl1e performance
gains can more tl1an justify it.

Step 3: Try to pull tl1e 'hot spot' out of the program so tl1at you can change it
and test it quickly. Then experiment witl1 different codes to see what
goes fastest.

Step 4: Put tl1e new code back into tl1e main program and check tlrnt you still
get tl1e same answer for your test problem.

Step 5: Repeat from Step 2 until no fortl1er improvement is possible or neces
sary, or you have run out of obvions ideas . There are still rnany tricks
to investigate, induding merging DO loops, localising rnernory access to
remove random addressing for data used more tl1an once, and rereading
Chapter 5 about pipeline stalls and what to do about it. Many compilers
offer DO loop unrolling, so investigate it. It does not always help.

9 .4 Scaleable performance

Scaleability is tl1e great hope of parallel programming. Scaleability means tl1at as
you add more processors to your madune so its performance (i.e. tl1e wall dock
or elapsed time taken) on your code decreases by a corresponding degree.
Doubling tl1e number of processors may halve tl1e total run time, or tl1at is tl1e
l10pe. In practice, speeding-up will be Jess tl1an perfect, for reasons discussed
earlier when Amdahl's law was considered.

Linear scaleability is tl1e ideal case. However, performance is often best
expressed in terms of some application-specific measure of tl1e amount of usefol
work being performed, not merely a count of tl1e amount of aritl1111etic being
clone each second. Indeed, be carefol not to seek to mislead others or be misled
yourself. The best measure of performance is not a count of Mflop/s but tl1e
amount of use fol work (or 'science') being performed. The reason is simply tl1at

Scaleable performance 239

the two need not be related; in fact, tl1ere could be an inverse relationslup. For
example, consider a computer mode! tl1at is going to be evaluated 10,000 times.
Doyou:

1 change tl1e mode! to maxinuse tl1e Mflop/s attained by tl1e processors; or
2 change tl1e mode! to ma.'\:imise tl1e number of mode! evaluations performed

per hour ofwall dock time.

If (1), tl1en you can boost Mflop/s by altering the code to do more aritl1111eti:,
JJiz. malce use of BLAS routines, remove sparsity and unroU large loops. Tl11s w1ll
often optimise Mflop/s, produce scaleable performances and look exceedingly
good when viewed from outside. If (2), you seek to speed up tl1e code by reduc
ing tl1e amount of aritl1metic being performed, exploiting sparsity, using storage
to avoid recomputing fonctions, and perhaps switdung to 32-bit matl1ematical
fonctions. The more successfol you are, tl1e lower tl1e number ofMflop/s per sec
ond because times are now dominated by tl1e serial part; performance may no
longer scale at tl1e same level of parallel granularity as previously, but you may
adueve two or tl11·ee orders of magnitude more mode! evaluations per hour! More
science for Jess cost but witl1 seenungly far poorer Mflop /s characteristics. Option
(2) is what you should aim for, but in man y cases option (1) is ail you get!

Sorne applications when expressed in a parallel form achieve superlinear speed
up . Superlinear scaleability is defined as an improvement in 'performance' as tl1e
number of processors increase tl1at is better tl1an linear. Tlus may seem to be
impossible, but it can happen for varions reasons: for example, a sudden reduction
in remote memory reads due to more processors, resulting in a better local disti·i
bution of tl1e data; tl1reshold effects due to caching, pipelining, and otl1er ardu
tecture specific peculiarities (viz. a reduction in paging); or even an algoritl1m tlrnt
becomes more efficient as tl1e numbers of processors increase. The latter may
appear miraculous and it is to some extent but it is not impossible! Certainly, some
metliods, such as genetic algoritl1ms, can perform better when more processors
allow Jarger population sizes to be used, and tl1is may improve tl1e results .. so
altl1ough more work is being clone during each iteration, tl1e total work bemg
performed overall may actually be reduced because tl1e best solution is found
more quickly! Anotl1er benefit occurs when more processors permit more work to
be performed and tlrns provide improved results or higher-qualit:y solutions.
Bence tl1e superlinearity relates to tl1e quality of tl1e results (anotl1er measure of
performance) and reflects tl1e availability of more proces~or time. F~ster turn
around can itselfyield sig1uficant 'exri·a' benefits in a real-time modelling or spa
tial analysis context.

Far more common is the opposite effect. Performance scales for a wlule and
then deteriorates dramatically. This can be caused by several factors, including an
increase in commmucation overhead as tl1e amount of work assigned to each
processor is reduced or processor speed increases. Maybe tl1e answer is to ri·y to
create algoritl1ms tl1at have an adaptive component to tl1em so tl1at tl1ey can sense
tl1e time taken to perform a subtask and tl1en distribute tl1e Joad accordingly. MPI

240 ÜPtimising performance and debugging hints

gi''.es you the flexib.ility. to do this if you wish, but you have to be clever enough to
buil~ auto-adaptation mto your algorithms. It cannot do it for you. There is no
magIC MPI subroutine we have not told you about!

9.5 Exploit Amdahl's law

Morse (1994: p. 239) suggests two very useful rules ofthumb.

Rule 1: Efficiency decreases with machine size if the problem size is held
constant and more processors are used, wlùch is are-expression of Amdahl's
law. So avmd the. probl~m by increasing the problem size either by using
more data or by mcreasmg the computing load (i.e. by switching to more
rob.ust and less assumption-dependent computationally more intensive alter
natives that y1eld better science). For example, instead of conventional non
linear optinùsation methods, wlùch can get sn1ck in local non-convexities
use genetic algorithn:-based alternatives, which are better (in the quali~
sense) but need 100 tlmes more computing power.

The pur~ose of HPC is not just a faster results delivery service but also to yield
better sc.1ence. Better science may be obtained by a variety of routes but mainly via
a m~re tlmely result and by a better-qualit:y result. In a geocomputational context,
qualit:y may be partly a. fonction of data resolution and hence quantity, tl1e pedi
gree of whatever is bemg computed, robust11ess or optimality of results, better
knowled~e about tl1e resu!t (viz. confidence intervals, sensitivity analysis and error
pr~pagatlon properties), and more data due to ease or conve1ùence ofHPC appli
cations 111 a GIS data-rich age.

Rule 2: Efficiency increases witl1 problem size if tl1e number of processors is
held .constai~t. This feanire has been observed in many real-world problems
and is seem~ngly related to tl1e differences in growtl1 rates of tl1e pai·allel
and sequent1al pai·ts of tl1e problem. This is also sometlùng tl1at algoritlun
designers cai1 influence.

In essence, tl1ere is no escaping tl1e basic proposition tlrnt lai·ge parallel maclùnes
need lai·ge problems, where large in tl1e first instance relates to tl1e number of
pr~cessors and il~ ilie s~~ond instai1ce to ilie computational content of tl1e appli
cation. You c'.111 explmt parallel HPC by 'growü1g' tl1e computational content
ai1d tl1e quality of tl1e science at a rate that reflects increases in machine
speeds . Tlùs is not a new idea but a useful fact of life tl1at geographers could
usefuliy exploit.

Sorne MPI optimisation secrets 241

9 .6 Sorne MPI optimisation secrets

9. 6.1 Li mit the number of messages

Messages ai·e essential to parallel programs so iliat processors have tl1e correct
data and cai1 report results for tl1eir calculations . However, messages ai·e 'expen
sive', tlrnt is tl1ey talce a long time relative to arithmetic calculations, which are
what you acmally want a parallel maclùne to be doing. So remember tlrnt when a
processor is commmùcating or waiting to receive or waiting to send a message, it
is ii1 fact idle . The megaflop rate is O. Notllli1g useful is happe1lli1g from a compu
tational point of view on tlrnt processor. So all tl1e time iliat M processors spend
spealcing to each otl1er is idle or wasted time . You clearly need to reduce tlùs chat
terü1g as muchas possible.

A key pai·t of tl1e optimisation process is limiting tl1e number and size of mes
sages. A big message obviously talces longer tl1ai1 a small message, but there is a
fixed cost to ail messages and it can often be better to send a single large message
tlrnn lots of smalt messages, even after ilie ext1·a work of building a buffer and
paclcing tl1e data ii1to it. Anotl1er unnecessai·y cause of messages is data dist1·ibu
tion ai1d reduction. As we saw in botl1 tl1e GAM and tl1e spatial interaction mode!
case studies much of tl1e work involves sending out data and collecting results.
There ai·e some obvions ai1d simple metl1ods of doing tlùs, but tl1ey may not be
tl1e best way of doing it, for example if we need to sum a series of numbers and
dist1·ibute tl1e result to ail processors . The 'obvions' way to do tlùs is to have ail
processors send tl1eir results to tl1e master to do tl1e summation and tl1en send out
tl1e result. Tlùs needs 2(N - 1) messages. Another metl1od is to imagii1e tl1e
processors beü1g in a ring ai1d passü1g tl1eü· local results clockvvise and summing
tl1eir result witl1 ilie one received ai1d tl1en passing on tlrnt result. Tlùs leads to
(N - 1)2 messages but Jess local contention. 'Contention' is tl1e term used to
describe tl1e 't1·affic jam' tl1at occurs when a processor t1·ies to send or receive a
large number of messages at tl1e same time . Usually, sendii1g a message requires a
large number of operations such as copying tl1e data to a buffer, loolcing up tl1e
address of tlK receiver ai1d negotiating witl1 tl1e receiver. Tlùs al! talces time, and
even witl1 asynchronous messages notllli1g else can be done while tlùs happe1ùng.
In tl1e first case, processor 0 receives N - 1 messages and sends N - 1 messages .
Since it can only send a single message at a time, tlùs obviously talces quite some
time. In tl1e second case tl1ere ai·e more messages, but tl1ey ai·e spread more evenly
between tl1e processors, wlùch may be faster.

As a programmer, you may need to lmow what sort of processor ii1terconnec
tion network you have, what tl1e time costs of messages ai·e and how your system
handles message contention before you can decide wlùch is tl1e best method to
use, ai1d tlùs is for tl1e simple case of summing a set of numbers . But do not
despair! The MPI stai1dard provides a number ofhigh-level data dist1"ibution and
reduction metl1ods. So whoever developed MPI for your system will know (or
have discovered) tl1e key pai·ameters for your system and will (hopefully) have
implemented tl1e best metl10d for you. So al! you need to do is cal!

Some MPI optimisation secrets 242
MPI REDUCE and it will be t! · l l · - le optima so uuon for your current system but
when you move to a new machine your code will still be optimal witl1 no cha:1ges
on your part, because tl1e version of MPI REDU CE r: . tl . ' .
also l b

. . _ io1 iat new machme will
, lave een opt1n11sed.

A ~la! t11~ught. In case you are wondering how to count messages t!1ere are
~>vo a ternatJves'. Some software tools will do dus for you and map ou: tl1e fl ' .
v1sually. Alternativelv von . dd ows

1 ' 1 can a counts to tl1e processor-specific code and tl
report tl1e totals at tl1e end of tl1e run . ' len

9. 6.2 Data locality

~essages are expensive, so ifyou eau avoid passing bits of data from processor to
pd1 oc essor you should. If you have enough memory space, you can store tl1e whole

ata set on each processor and · t . d
. f tl , JUS pass an m ex to a processor tl1at tells it which

part o le data to work on If tl t · . bl
tl b

· la 1s not poss1 e, tl1en u·y to determine what is
1e est way to lay out t!1e dat b tl ' . . ' a etween 1e processors . As we saw in tl1e spatial

mteraction mode! case studv 'f l tl ' '
. 1, 1 you c loose 1e wrong metl1od tl1e number of

messages reqmred can be .much higher. Try to draw a picture of tl1e data la routs
at each step of your algontl1ms: watch for reduction and disu·ibution o .) .
espec1ally carefully. perations

Profiling can help here Yon · tl .
. . l b . may notice lat a smgle message call is inside tl1e

lm~m oop 1

1
1t could be moved outside it, or replaced witl1 some replicated calcu-

ation on eac 1 processor For i t · b '
d l

· ns ance, It may e necessary to calculate how much
ara eac 1 processor has This c b d tl . · an e one on le master processor and disu·ibuted

tol ea~h p1fio~e~sor, or each processor can be sent tl1e size of the total data and tl1en
ca eu are Ot itself what its share is. Look for opportunities to use local t ..
ratl1er tl1an message pass· d . . ' s mage

d 'd . ' mg, 0 more computation mstead of message passing
an ~\~O~ cr~ating code where tl1e number of messages being passed is an' expo:
nentJa mction of tl1e number of processors being used. ,

You need to look for opp ·n · · ·
l . d 01 Imtles to 1mprove data locality. Consider t!1e fol -
owmg co e fragment:

DO I=l, 99999

DO K=l , N

X (K) = Y (K) / Z (INDEX(K)) +X (K)
END DO

END DO

Far better is

DO K=l, N

ZZ (K) =z (INDEX (K))

END DO

DO I=l, 99999

DO K=l, N

X(K)=Y(K) / ZZ (K)+X(K)

END DO

END DO

Debugging message passing 243

because ZZ is a serial version of randomly accessed array Z. Do it once, so that
subsequent accesses are sequential in memory. Remember tl1at on modern hard
ware memory access is far slower tl1an computation, and if you can access mem
ory sequentially then you will gain major performance benefits from caching.
Thar is, ilie processor will often read allead and store tl1e data in very fast memory
called a cache . If tl1e next memory access is to this cache, tl1en it will be reu-ieved
mu ch more quickly tl1an if tl1e access is random, when tl1e memory cache will have
no effect.

9.6.3 Synchronous versus asynchronous messages

As we have already discussed, MPI provides two different types of message: syn
cl11·onous and asynclu·onous. A synchronous message pair is like a telephone cal!;
botl1 parties must be involved at tl1e same time, and tl1ey must botl1 finish com
municating at tlie same time. An asyncluonous message is like an e-mail message:
tl1e sender can carry on working after tl1e message has been sent, and ilie recipi
ent can collect tl1e message whenever it is convenient to do so. An important
speed improvement eau be obtained by 'hiding' tl1e time taken for a message to
complete by using an asynchronous message and continuing with a calculation
while it completes. However, tl1ere are a few problems tl1at must be considered. If
tl1e slaves are producing large numbers of messages, it is possible for iliem to over
whelm the master. So you should always talce care to check tlrnt tl1e previous mes
sage has been received before sending tl1e next one. While tllis will slow clown
your program in some cases, it will also prevent it craslling!

However, in some circumstances asyncl11·onous messaging can be a very useful
technique. For example, in genetic programming it is common to have individual
processors or groups of processors working on a separate population. When a
processor finds a new best solution it is useful to store tllis result, so it must be
passed to ilie master processor. But tl1ere is no need for tl1e evaluation of ilie
population to halt wllile tllis is carried out, so an asynchronous send is ilie best
message type to use.

9. 7 Debugging parallel code is harder than serial code

Morse (1994: p. 200) modestly notes tl1at: 'There are a number of coding errors
mlique to parallel macllines, whose detection and resolution may require special

244 Optimising pe1formance a nd debugg ing hints

debugging services' . He also adds that the answer to the question 'is parallel code
more difficult to debug than serial code?' is yes in near!y all cases. The relative sim
plicity of handling a single instruction stream by either a debugger or print state
ments becomes at least a factor of M rimes harder when M different instructions
su·eams are being executed concurrently, any or ail ofwhich you can print or be
symbolically debugged. Sorne oftl1e problems are:

1 Compiler bugs are far more common tlrnn are now typical in serial environ
ments, where ilie software is very mature and almost completely bug-free.

2 Parallel synchronisation faults are bard to spot, because tl1ey may occur only
sporadically or be dependent on otl1er activities going on in tl1e hardware
tl1at are unrelated to your code .

3 Wrong results can easily occur but witl10ut any indication of any errors
being detected, due to errors in tl1e parallel logic (see Chapters 3 and 4 for
suggestions).

4 The order in which operations are executed is often non-deterministic and
can differ from one run to tl1e next, so errors may be difficult to reproduce or
may be different on different machines or tl1e same machine witl1 different
numbers of processors.

5 The problems caused by logic errors may become visible only when a partic
ular number of processors is used and are tlms difficult to recreate .

6 There is a factor of M rimes increase in potential debugging output witl1 lvl
processors running in parallel, so start by being careful.

7 A high frequency ofu·ansient errors tl1at are problem-data-and problem-size
specific.

8 Errors are often highly non-local in tl1at an error on processor 1 is sent to
processor 2 and tl1en onwards to processor 17, etc. before it is detected,
which makes debugging very difficult.

9 Often tl1e programmer's intuition, combined witl1 prolific use of selective
print statements and good luck, is tl1e only hope of spotting complex bugs;
but tl1is is bit or miss and can take much effort and rime to be successful.

10 Interactions can occur bet:ween the debugger and compiler optimisations, as
the optimising compiler often resu·uctures code, which desu·oys tl1e connec
tion witl1 tl1e code tl1at tl1e debugger was run on, so tl1ere may be little point
in stepping tlu-ough parallel code to find a bug because in tl1e final optimised
version tl1e sequence of operations may be different.

Despite tl1ese problems, debugging is also often a source of considerable intellec
tual excitement and satisfaction when an elusive bug is finally obliterated. On a
rainy, dull day, tl1ere is sometimes little more tl1rilling tlrnn spotting and tl1en
killing a particularly subtle parallel HPC bug.

9.8 Debugging message passing

The art of debugging parallel code is to keep tl1e de bug output to a minimum and
tl1en seek to monitor tl1e local behaviour of a specific processor in order to

D ebugging m essage passing 245

. f tl roblem You need to be able to spot patterns,
develop an understandmg 0 le P . · d · · d t" t)r the suspects or vil-
look for dues and in tl1e manner of a cnme etecu~~ 1 en L

lainous bits of code before dispatching tl1em to obhv1on.
' A possible su·ategy for bug detection is as follows:

1

2
3

4

5

6

7

. tl . . . blem even if ilie program finishes normally. It is Idenut)r t11at 1ere 1s a pro , . b .
1 . blem if tl1e program tenmnates a nor-much easier to lo1ow you 1ave a pro ' 1 ..

1 · b t totallv 'wrong resu ts are. mally. Clues to normal comp euon u ') .

• they do not make sense (but tllis may mean that your expectauons are at

fault); 1 t into the code hop-tl1ey fail logical consistency checks that you rnve pu . tl
ing tl1ey are never u·iggered (but you may often have bugs 111 1ese

•

ctlhecks);. leted far too rapidly (tllis is always a cause for suspicion);
• 1e run is comp ' . · . "ftll number of

rou obtain very different results each Ume ym~ run it or 1 e
) rocessors is cha.nged (tllis is exu-emely worrymg);. . ..
p b . differen t result on your workstation w1 tl1 a smgle processor' you o tam a

•

•

•
~ dff 1 if compiler optinlisation is turne o or you obtain different resu ts
changed.

~ve andf~he~~!~~~~'.::1~~~e ~~~~
1~~r~:~e:·~·esult' is known eitlm· accurately or

un 01'. ce ' ' use random data what would you expect to get? Ifyou
approximately. (If)OU d · ~1.. 1 own properties do the results resemble
manufacuu-e syntl1euc ata w1u1 u1

prior expectations?) ou do witl1

~l:~c;~ :i~~~~;~~ ~~~:~~1~1::1~:t~e:~~~i;~~~s~~~J~-1~~~:~,\::t~t in tl1e test
) ali · . t u-igger subtle bugs)·

data being too small to be re su~ ~r 0
· values to see if tllis

Try modit)ring ail array sizes to muumum data set spec1fic

u-iggers sometlling tlrnt is detectable. . .· . der-
Trap or detect (if possible) ail operation excepuons (e.g . antl1meuc un

flows overflows, NaNs etc .). . . . ·
' . subscri t checking and cross-referencmg opuons

!~~1~1~ b~~~~~g~~~~y compifer (and language) tl1at cannot detect invalid

subscripts.

. witl1 C and maybe also in some versions ofForu-a.n 90,
Tlus is tl1e nrnJOI problem dd . ·obably t11e most common error · !id arrav a resses is pr ' as attempting to access mva ' 1

you can malce. The statement

REAL X(lOO)

X(l01)=57.6 .

1 1 ·d C programmers may u·y to convmce . fi t . 110 matter 1ow 1ai
is a bug not a ea ure, ' S b .· t bugs are tl1e most common
you iliat it does not rnatter. It does . u scnp

246 Optimising pe1formance and debugging hints

programming error you are likel ' t al C .
subscript checking are doin) o m, ce . ompilers tl1at possess no means of

' g no one a service and could d b
sible for tl1e next world warl Al 1 1 tl , . even one ay e respon-

. so, oo c at 1e compiler w . ·
ail declarations explicit (' F arnmg messages. Malce
uninitialised variables· J·us t1~e oru·aiX1 . use IMPLICIT NONE). If possible, flag

. cause is set on processor 1 d . .
set on processors 2 to N. Avoid CO . oes not mean 1t w11l be

MMON storage m Fort:J.·an.

8 Run on a single node to determine wl tlJ . .
9 Look at tl1e code and u· ' . . 1e er ilie error is parallel in nature .

self-evident You ~o no~ to ident:J.fy tl1e cause of tl1e problem; it will often be

about tl1e c~de Sketch o~~~~~ ari~1~01ic debugger ifyou really need to tllink
rewriting it fro;11 tl1e code ed dd oops_, check tl1e logic oftl1e algoritl1m by
colleague. If ail that fails t1' aiJ a nd1obre comments. Try explai1ling it to a

, 1en use a e ugger as tl 1 tl a first resort. 1e ast resort ra 1er tl1an

10 ~ook_ at tl1e logical st:J.-i1cture of tl1e code and u· ' . .
itl1m 1s dou· 1g · ·u·all) to imagme what tl1e algor-

' 1111 Y around whe · tJ · 11 tl
tl1en more globally. re you 111 c Je problem lurks locally and

11 011ly if you still have a proble . . .
autl10rs daims tl1at he has nev _nl1 rdesor t lto usmg a debugger. One of tl1e

' er 1a mue 1 need to do t11· tl tl
ai·gue tl1e opposite in t!Jat 1 . is; 1e o 1er would

' 1e never tests a program t1J t f; ·1 »L
alternative is to add 1 IF . ' a ais w1u10ut it. The

se ect statements 111 orde. t ~L fi. . .
tl1e program. 1 0 test uie mct:J.omng of

A large number ofu·ivial rob! tl
some of tl1e following:' p ems 1at can cause serious bugs ai·e probably due to

•
•
•
•
•

use of a_ misspelled vai·iable name iliat is valid
w~ndenng off tl1e end of aiJ ai-ray

'.rusplaced END IF statements tliat altered tl1e logic of tl d
mco1-r~ctly programming tl1e algoritl1m in ilie fi. t 1 1e co e
er·1·01·s 1 s P ace m arguments to subrouti ail al .
detect iliis for you. ne c s, tl10ugh many compilers will now

Sorne basic rules oftlmmb are as follows:

1
2

3

4

bugs ai·e seldom due to tlJ .1 b e comp1 er not worlcing properly-
ugs ai·e even less likely to be due to a bard ' . ' .

results · ' ~aie fault tliat results 111 erroneous
'

nearly ail bugs are due to logic errors in tl1e c di .
ably more likely due to error . tl . o ng of an algontl1111, or prob
algoritl1111; s 111 1e 111tended füncti01ling or design of ilie

because you failed to anticipate 'b d' d .
conditions ai·ising during ex ' . a f tl ata or unexpected data-dependent

, ecut:J.on o 1e progra N 1 user ofyour program obe in tl1e r . m. ever re y on tl1e end-
not write code tl1at does! y g tiles. You sunply caimot u·ust users, so do

Defensive coding 247

If you have access to good pai·allel debuggers aiJd performance visualisers tl1en use
tl1em, but tl1eir use will by themselves not necessarily solve your problem. You
need to tllliùc about tl1e problem using whatever evidence exists to localise aiJd
tl1en u·ace tl1e source . Quite often, tl1e debugger is 011ly usefül in helping you to

understand a bug tl1at you have had to find by otl1er meai1s. The PRINT or
WRITE statement is still a most usefül device. Indeed, we suspect that it is still
used to debug mai1y pai·allel codes.

9. 9 Defensive coding

The most difficult bug to find is probably tl1e one tl1at depends on tl1e order in
wllich events occur. Most of tl1e time tl1ere is no problem as messages ai·e gener
ated in tl1e expected seguence, but sudde11ly tlie seguence changes (perhaps due
to external factors such as a change in Joad on tl1e HPC) and an error appeai·s.
Alternatively, tl1ere is a logic error tl1at does not matter most of ilie time but
wllich is triggered when tl1e size of application changes, a new version of a com
piler is installed or unai1ticipated data values occur. It is potentially very worrying
when you hear people tallcing about codes tliat work on 64 or 256 processors but
not 512 or 128, or reguire use of the previous version of tl1e compiler, or even
reguire tl1at ail optinlisation is turned off so tl1at it will run! Such situations, it
seems, ai·e guite common but ai·e almost certaiiùy indicative of bugs. Bug-ridden
codes caimot be trusted to yield good science, or even safe science. So bewai·e!
Quirlcy codes are really bug-ridden codes, except tl1at tl1e bugs are alive and well
and you ai·e tl1e intended victims. Yon can have no great confidence in su.ch codes
or tl1e results tl1ey provide. Sorry! Computers are not to be u·usted. Codes tl1at
contain bugs caimot be u·usted; nor should tl1ey be. Codes tl1at contaii1 no visible
bugs may still be unu·ustwortl1y! The onus is on tl1e user to demonsu·ate
uneguivocally tl1at tl1e restilts ai·e 'correct' . Formai proofs of software correct:J.iess
wmùd be ilice but do not exist for most applications. HPC applications in geogra
phy aiJd GIS are not nlission critical, but tllis does not mean tliat the results do
not matter. They do!

One solution is to reprogram tl1e same algoritl1m by five independent
researchers, but what if ilie error is in tl1e algoritl1111? Another is to test tl1e code
on mai1y different applications by mai1y different users, asking tl1em to individu
ally and independently validate tl1e results (tl1e beta testing approach) . Maybe ail
you cai1 dois to perform ail obvions and reasonable checking (necessai·y to avoid
potential litigation, if relevai1t) ai1d tl1en create a mecha11Ïsm for users to report
bugs or potential bugs .

A good way of avoiding some of tl1e problems is to build logical checking into
tl1e code. Examples ai·e given of tllis in Chapter 7 . For exai11ple, it is always a
good guide to u·y to validate tl1e address of tl1e sender or tl1e message number
and build tllis logic checking into tl1e code if you can. If you cai1 establish con
sistency checks tl1at can be applied to the results (i.e. tl1ey should sum to a
known value), tl1en do so. ldeally, you wai1t codes to self-test tl1emselves if at ail

possible as often as possible.

248 Optimising performance and debugging hints

9.10 Shared-memory debugging

T_he. global memory of this hardware malces debugging easier than with
distnbuted-memory systems. However, the hardest bugs occur in shared or
global memory being written into by multiple processors or multiple subroutines.
The Foru·an COMMON statement can cause much mayhem; for example, these
statements are acceptable Foru·an:

COMMON FRED, N, M, X(2)
then in SUBl

COMMON FRED, X(2), N, M

X (1) = 27.0

then in SUB2
COMMON FRED, N, M, X(2)
DO N=l, M

but they can create a very difficult to-detect-bug. Here the layout of the data in
the COMMON black was different and because of this quite different, values
c~me out_ of it. Also, ~1e identifier N has been used as the index in a DO loop,
w1th poss1bly devastaung consequences the next time access is made to the value
stored in N. The debugger will tell you that N has the wrong value, but the error
was caused somewhere else that may be difficult to u·ace. Much of this advice also
applies to debugging non-HPC codes.

Perhaps more common are synchronisation bugs where a critical variable is
updated simultaneously by multiple processors due to a missing statement. The
results produced are wrong, but the program does not fail. Somehow,)'OU have to
be cle:1er en~ugh to spot that the results are incorrect. So build in as many self
checkmg logic tests as you can manage and leave them in your code.

9 .11 Message-passing debugging

There are some very common errors, which can be listed as follows .

1

2

3

Messa~e pairs do not complete. Processor 0 expects N messages when in
fact w1th N processors it must allow for itself and only needs to receive
1! - 1 me.ssages. In this case processor, 0 will wait until the program is killed
smce it w1ll never receive the last message, or it will grab the first message
of the next batch but do the wrong thing with it.
Messages are the wrong size. If processor 0 sends processor 1 a message of
twenty numbers when processor 1 is expecting seven numbers then the
remainder of the program may fail horribly (if you are lucky), or it may just
carry on but be wrong and maybe you will never be any the wiser!
~ot pa~sing key parameters out to other processors. If processor O reads
111 the s1ze of the data set (N) from a file and then uses this to calcula te how

Message-passing debugging 249

much data to send out to the other processors, you must send N to ail the
other processors so that they can u-y to receive their N/M share elements of
data, but on many machines N will be 0 or undefu1ed.

4 Not telling the slaves to stop. In many MPI programs, the processors are
split into a master and the remainder are slaves . In general, slaves consist of a
simple loop that receives an insu-uction from the master, executes some cal
culations and sends back a result. It is vital to have a mechanism for the mas-
ter to send a slave a 'quit' signal so that it knows there is no more work and
that it can exit or proceed to the next task. In tlus simation, it is also import
ant for t11e master to keep u·ack ofhow many slaves it has and how many have
been informed that it is time to stop. The master cannot stop until t11e last

5

slave has also been told to stop work.
Deadlocking. A deadlock can occur if two processors attempt to send
synchronous messages to each otl1er at t11e same time. Unfortunately, neit11er
processor can now proceed until t11e ot11er has received t11e message but
neit11er can receive it tmtil tl1e send has been completed. Tlus can be avoided
by using asynchronous sends or by resu-ucturing t11e code on one of t11e

processors.

Deadlocking is easy to spot in tl1e two-processor case, but it can be harder to
see wit11 more processors. For instance, ifit is necessary to sum a series of numbers
held on different processors, one possible algorit11111 is to pass a number to tl1e
next processor and add tlrnt to your number and t11en pass it on. If all t11e proces
sors use a synclu·onous send, tl1en ail four will deadlock. One way to spot tlus is to
draw a series of time lin es wi t11 messages as arrows c01111ecting tl1e lin es. It would
t11en be immediately clear tl1at the processors cannot reach t11e receives. A poss
ible solution is to have even-numbered processors send and odd-numbered

processors receive fu·st, then vice versa.

6 Data division. Many MPI codes will <livide tl1e data between tl1e processors .
If care is not talcen, a number of errors can creep in at tlus point. A common
error is to mis calcula te the start point of tl1e blacks of data and eitl1er miss out
some data values or send the same data values to t\vo different processors .
Anot11er difficulty is handling tlK rnaster processor. Since it holds ail t11e data
it does not need to send tlus portion, but it does need to copy it to t11e same
place as t11e otl1er processors. It is also vital to cakulate t11e sizes of tlK blacks
correctly. In very few cases will t11e amount of data <livide evenly by tl1e num
ber of processors, so talce exu·a care as to wb.at b.appens to t11e remainder. If
you do not, then you rnay never spot t11e loss of data tlrnt may occur as t11e
nurnber of processors is changed. The solution is to u·y to program t11e data
division code correctly and tl1en, in case you get it wrong (well it was Friday
afternoon!), check tl1at t11e number of cases tallies . Lilcewise, some global
data check sums can be helpful; e.g. add up ail t11e values of a variable when
read in and check it later against tlK accumulated sums returned from each of
t11e separate processors. They should match (apart from rounding error).

250 Optimising performance ancl clebugging hints

9.12 Conclusions

This chapter has concenu·ated on the boring part of parallel programming an
HPC. Debugging is obvions but is often hard work. Error checking and results
verification are also most important but are often talcen for granted. Scientific
papers are subject to extensive and rigorous peer review, but their computer code
is never examined or independently evaluated or reviewed.

The absence of error indications may mean any of tl1e following:

1 tl1e answers are correct
2 tl1e bugs were never found
3 tl1e algoritl1111 was correctly coded but was wrong
4 tl1e code contained undetected bugs but was able to cope witl1 tl1em
5 massive undetected numerical rounding inaccuracies occurred, but no one

noticed
6 tl1e code and algoriilim were correct but tl1e data were wrong
7 all run-time error flags were turned off to improve performance, sono one

spotted tl1e six billion <livides by zero tl1at occurred due to correct but unan
ticipated data

8 tl1e values created by tl1e parallel random number generator let you clown and
generated tl1e same sequence on each processor which you failed to notice .

Outcome (4) is interesting. Genetie algoritl1111s are exu·emely robust. Qui te often
tl1ey will deliver 'correct' results even if tl1e code contains logical errors. Per
formance suffers but not tl1e quality of tl1e results. It would be nice to be able to
build more self-healing codes.

The chapter also offered advice regarding performance optimisation. This
consolidates tl1e practical experiences of tl1e preceding four chapters. Maybe it
is all self-evident, but few parallel programmers have documented tl1e tricks of
tl1eir u·ade or ilie lessons tl1ey have learned, or talle about tl1eir experiences.
Weil, we have 'bared all', apart from tl1e really embarrassing mistalces, which
we do not care to talle about! The hope is tl1at by reading about our experi
ences you will be able to improve on tl1em.

10 Putting it all together

It is now 'do-it-yourself' time. This chapter introduces you to tl1e idea_ofb~nch
marking HPC hardware. It tl1en briefly describes tl1e so-termed social sciei:ce
benchmark and tl1en invites you to download tl1e source code from a web site.
This code will nm on virtually any hardware ranging from a PC to a Unix work
station to tl1e world's fastest parallel supercomputer. Having read tllis book, you
should be able to understand most of tl1e source code . You may even be pos
sessed of sufficient curiosity to u·y it out. The next step after tl1at is to move on
to writing your own parallel programming software all by yourself.

10 .1 Backgrmmd
The purpose of tllis chapter is to put togetl1er some of the skills learned in pre
vious chapters and use tl1em to exanline code tl1at has been_ created to meas~ire
tl1e performance of HPC hardware. Openshavv and Schmidt (1997) _de~cnbe
what tl1ey call tl1e social science bencl1111ark (SSB/ l), which uses a spau~ mter
action mode! to meastire tl1e performance of HPC systems. Tlu·ee versions of
tllis code have been developed, and two of tl1ese are examined briefly here to
illusu·ate different pm·allel programming styles. The three different codes are
Highly Pm·allel Fortran (HPF), MPI and bulle synchronous _par~el (BSP)
mode!, altl1ough tl1e latter is left for tl1e reader to study. Our advice is tl1at MPI
offers tl1e most flexible, tl1e most portable and tl1e most future-proof approach,
but it is, nevert11eless, still interesting to see how otl1er languages perform t11e

same task.

10.2 Introduction to benchmarking

Computer benchmarks serve no really useful research or scientific purpose otl1cr
tl1m1 to satisf)r an innate curiosity about how fast one lump of HPC metal goes
compared witl1 m10tl1er. It is interesting because dif~erent HPC hm·dware based
on different components employing different arclutectures will run tl1e same
application quite differently. You must have wondered ho_w badly y.our classte
33 MHz PC from 1993 runs in compm·ison witl1 a Penuum II chip rated at

252 Putting it all together

450 MHû Does the Pentium II chip really run your code 450/33 rimes faster1
Additionally, how do you measure speed at all? The dock frequency of the micro
processor is not much help in judging how fast it will run a model or handle a
database . So the usual answer is to identify a representative application (often
several) that the hardware is being purchased to run and then rime how well it can
handle it. Typically, you would also vary the amount of data being processed to
check on the degree to which the code will scale to larger problems . Of course, no
research council is (yet) likely to consider the purchase of a leading-edge HPC to
meet the specialist needs of geographers or other social scientists. Nevertheless, it
is still interesting to see how different hardware and different parallel-program
ming models and languages can handle a spatial interaction mode!.

A spatial interaction model is usefi.ù in dus context because the explosion in
the availabilit:y of flow data of al! types has created a latent demand to run these
models on data too large to be easily handled by more conventional computers .
For example, to model the largest public domain flow table available in the UK
(viz. the journey to work flows from the 1991 census for ail wards in Britain)
there is a reqtlirement to process a table comprising 10,764 columns by 10,764
rows. Yet the maximum flow data table (i .e. telephone flows between houses)
that may exist cmùd well have between 1.7 and 30 million rows and columns.
Data mining and modelling of these, and other even larger, data sets can now be
undertaken and the results geographically analysed and modelled using HPC
technologies. So HPC has the potential to open up new areas for research, but
only if those researchers with the potential applications can grasp the new oppor
umities, if the applications are sufficiently important to attract HPC resources,
and if tl1e HPC hardware can cope with the computing loads Wcely to be placed
upon it. Many otl1er geographical problems are nauirally data-intensive and put
heavy demands on storage resources . They also require large amounts of mem
ory and disk space. So given the processing capabilities of contemporary parallel
systems, tl1e modelling and analysis of these large data sets is now within reach.

There are many different standard scientific benchmarks that are often used to
assess the performance of HPCs. Many vendors and NASA researchers reported
tl1e results for the NAS parallel benchmark, but it is representative only of
certain types of aero-physics applications . The GENESIS benchmark (see Hey,
1991) for dist:ributed-memory machines relates mostly to problems from physics
and tl1eoretical chemistry. The SPEChpc96 suite incorporates t:wo application
areas, tl1e seismic indust:ry computational work and computational chemist:ry,
but has not yet been widely adopted. Perhaps tl1e most commonly used is
Dongarra's Linpack stlite for solving dense systems of linear equations (see
Dongarra, 1995), but none of tl1ese has much relevance to GIS, geocomputa
tion or geography as most focus on raw-number crunching power, whereas most
geographical applications are simultaneously memory-bound as well as comput
ing-intensive. Hence tl1e benchmark codes described here add to a pool of tools
for evaluating parallel hardware from tl1e perspective of tllis type of geography
application. lt is argued tl1at what is good for geography is also usefül for tl1e
otl1er social sciences.

Introduction to benchmarking 253

10.3 The spatial interaction modelas a benclunark code

10.3.1 Brief description

The basic strucmre of a spatial interaction mode! has already been described in
earlier chapters. The version used here is slightly different in tlrnt a sparse array
data su·ucture is used to hold tl1e non-zero flows instead of storing tl1em all.
Tllis allows much larger problem sizes to be considered, because it malces much
more efficient use of memory, but it also desnoys tl1e simple data para.lie! snuc
uire of t11e models examined in earlier chapters. As a result, it presents a differ
ent and slightly greater parallel-programming challenge. Also, two different
types of spatial interaction model are used here as benchmark applications .

10.3.2 An origin-constrained model

The equations for an origin (singly) consu·ained mode! (SC) are given below:

j = l, ... ,M

witl1:

Jvl

A = l/:L D .fi(C)
1 j=l 1 IJ

i = 1, .. . , N

to ensure tl1at:

,1

L, T = O;
j=I IJ

i = l, .. ,N

where:
T;i is tl1e number of nips (flows) bet\veen zone i and zone j

O; is tl1e number ofnips starting in zone (origin) i
D is tl1e number of u·ips ending in zone (destination) j
C

1
is tl1e distance between origin i and destination j

IJ

N is tl1e number of origins
Mis tl1e number of destinations
exp (- ~C;i)C;ia is tl1e deterrence fonction.

(10.1)

(10 .2)

(10.3)

The modelling process reqtlires the computation of all elements of !T{cdicrcd l,
wllich is a lùghly parallelisable task. Typically, an error measure such as tl1e sum

of errors squared

N M () F == L L Ti.prcdîcrcd _ Ti· obscrvcd 2

î=l j= l 1 J

(10.4)

would be used to assess the model's goodness of fit to an observed data set.

254 Putting it all together

Another version of the singly constrained model is the destination-constrained
model, where the constraints relate to the destination ends. This model is a
mirror image of the origin-constrained model, and since it does not bring any
new computations, it is not considered for benchmarking.

10.3.3 A doubly constrained mode!

The equations for a doubly constrained (DC) model are more complex than
those for the singly constrained model and are as follows:

i = 1,. . .,N j = 1,. . .,M (10 .5)

where:

A;= l/L DBf(C;)
; ~1 1 1 1 i = 1,. . .,N (10.6)

N

B = l/L QA.f(C)
J i= J 1.L.1..j IJ j = 1,. . .,M (10.7)

This model is now constrained at both ends:

M

LT = O;
j= J IJ

i = 1,. . .,N (10.8)

and

N

LT = D
i~ I IJ J j = 1,. . .,M (10.9)

where T;i, Ü;, Di, C;i, N, M and the exp (-PC;i)C/ fonction have the sa.me
meaning as described previously.

10.3.4 Interesting properties of the spatial interaction mode! as a
benchmarlz

These models are useful for benchmarking because they represent a class of geo
graphical application that is far more data-intensive than is found in many other
areas of science. Typically, in a large number of geographical and social science
applications, little computation is being executed in comparison witl1 tl1e num
ber of memory references performed. This model is tl1erefore a good example of
a class of problems tl1at malce heavy demands on memory resources . Their per
formance reflects a machine's ability in executing a small ratio of aritl1metic

The spatial interaction mode/. as a benchmark code 255

operations to memory references . Additionally, tlùs benchmark has a reasonably
representative level of tl1e non-floating-point integer aritl1metic as it uses sparse
matrix metl1ods to store tl1e observed flow data for T;j. The need to perform
large amounts of integer aritl1metic is often overlooked in HPC benchmarks and
in hardware designed solely to optimise pure number-crunclùng throughput on
data stored in a highly optimised cache witl1 a large amount of aritl1metic for
each memory access . In otl1er words, benchrnark codes based on physics, chern
istry and most otl1er ha.rd science applications are probably not particularly
appropriate for tl1e computationally far less intense applications characteristic of
many areas of geography, GIS and social science, e .g . neural networks, genetic
algoritl1ms and geograplùcal models. HPC hardware tl1at can do billions of
dot products per second rnay not do nearly so well on a spatial interaction
model code .

Finally, it is noted tl1at in botl1 rnodels tl1e quality (i.e . spatial resolution) of
tl1e results depends on botl1 tl1e number of origins (N) and tl1e number of des
tination ends (M). Increasing values of N and M for a given geographical area
lead to more realistic modelling at a finer spatial grain, resulting in arguably
better science. However, this increases dernands on mernory as tl1ere is a need to
store larger a.rrays . Models witl1 small Nand Mvalues (i .e. 1000 or less) can be
run on a PC; large values (i .e. 25,000) need a para.Ile! system witl1 many pro
cessing nodes (e.g. Cray T3D); and tl1e bottom end of tl1e maximum possible
values (i.e . 1.6 million) may need the next generation or two of lùghly para.lie!
teraflop computers before tl1ey can be processed at ail.

The key features of the spatial interaction mode! tliat malce it a good bench
mark code are as follows:

1 The benchmark is easily portable to a broad range of hardware. It contains
only a few hundred lines of code; tl1erefore it is easy to understand and port
to a new platform. A useful benchmark must require the n1Î11Îmurn of ven
dors' rime and effort to apply it. Porting a large code is a non-trivial task,
and the simplicity of tl1e model and code are important. Its small lengtl1 also
eases Your task of understanding tl1e code.

2 The code is available in tl1e public domain and can be easily down
loaded from tl1e World Wide Web; see http:/ /www.leeds.ac.uk/ucs/
projects/benchmarks/index.html It would be useful if you were to down
load this code and conslÙt it in conjunction witl1 tl1e rest of tlùs chapter.

3 The benchmark is based upon a model used in real-life applications, but it
also encompasses a sparse data structure tl1at is common to some otl1er real
world applications. A good benchmark should be representative of tl1e area
of science it represents.

4 The benchmark has a bllilt-in data generator, so tl1ere is no need to store
any data on disk or perform large amom1ts of input and output during tl1e
benchmarking. Tlùs also avoids tl1e problem of slùpping large volumes of
data around and yet permits benchmark runs to be performed on realistic
and variable sizes of data set. The self-contained nature of tl1e benchmark

256 Putting it al/. together

code is another important ease-of-use feature. Ifyou want a code to practice
your parallel processing skills on then this is a good one because it is fairly
simple, it comes with its own data and it is freely available .

5 The executable rime and memory requirements for the benchmark are eas
ily adjustable (you merely have to alter the problem size, i.e. N, M values).
A standard set of ten (N, M) values is suggested that reflects clifferent sizes
of real-world application and offer a basis for scaleability and performance
measurement experiments on comparable problems on clifferent hardware .

6 The benchmark permits a wide range of data set sizes to be investigated,
provicling a platform for varions numerical experiments and also allowing
for scaling experiments with data sets of virtually any size that may be con
sidered important in the future .

7 The ratio of computation to memory references in the benchmark is t:ypical
of many geographical and GIS problems requiring the use of high
performance computers. Much social science computing involves a high
ratio of memory access to computation. In many statistical models, there is
also a memory access for each floating-point operation performed.

8 The performance inclicators can be reaclily interpreted because it is easy to
establish a model of the computational load being generated by the bench
mark. A mode! in this context is a count of the number of flops or integer
adds or messages passed. How do you count these quantities? Well that is
easy, you add counters to your code!

9 The use of exp and log fonctions in the deterrence fonction is deliberate. It
is designed to be representative of mathematical library fonctions com
monly used in geography and GIS. Note that HPCs designed for number
crunching often fare poorly in computing billions of exponential or log
fonctions.

10 The benchmark has a built-in results verifier that checks against the refer
ence values whether or not the numerical results are acceptable for a stan
dard set of benchmarks problem sizes. This is useful, because it ensures that
any changes of compiler or hardware or new versions of code still produce
the same, hopefully correct, answer.

10.4 The high-performance Fortran version

From a parallel -programming point of view both spatial interaction models are
inherently data parallel. This feature was noted in Chapters 5 and 6. The avail
able parallelism can be exploited by partitioning the data between several pro
cessors and assigning tl1e work using tl1e owner computes rule. The processor
owning tl1e data performs tl1e computations on tl1em and then communicates
only tl1e data elements needed by otl1er processors to them. This form of data
parallel computing can be reaclily operationalised via High-Performance Foru-an
(HPF).

The data generator in tl1e benchmark creates tl1e IC) IT .. abscrvcd l ID) and l IJ' \ IJ) \ J

1 O;) matrices; however, tl1e trip matrix is stored in a sparse format . Sparsity is

The /iigh-performance Fortran version 257

measured as tl1e percentage of zero elements to tl1e total number of elements in
tl1e (T;d matrix . This is fixed tlu·oughout the benchmark at 90%. The array
(Ttscrvcd l is compressed by eliminating all zero elements and by storing only t11e
non-zero values in a one-climensional array. Additional arrays are created tl1at
contain pointers to tl1e real position of tl1e data in tl1e uncompressed array. The
arrays are communicated to all processors. The (O;) mau·ix (or vector) is also
sent to each processor. However, tllis is where it becomes more clifficult. The
1 Di l maui,\'. (or vector) is generated by each processor separately and con tains
only tl1e partial values tlut have been computed for tl1e block of rows allocated
to tlut processor. Subsequently, a global reduction across all tl1e processors
needs to be performed on tl1em. Tllis neatly avoids tl1e problem of generating
large flow tables using only one of multiple processors while tl1e rernainder are
idle . If tl1is is confusing, tl1en maybe you need to reread tl1e account of alterna
tive data disu·ibution su·ategies for tl1e spatial interaction mode! given in

Chapters 6 and 7.
Current HPF compilers target an SPMD (single-program multiple-data) pro

gramming concept and implement tl1e owner computes rule; each processor
executes tl1e same program but operates on a local portion of tl1e clisu·ibuted
data . Altl10ugh HPF does not provide as much conu·ol over tl1e data clisu-ibu
tion as MPI, it does offer a dramatic simplicity of approach and implementation
at a lligher level of absu·action. Most importantly, HPF implementation does not
require a serial code to be explicitly resu·uctured for parallel processing, provided
that tl1e algoritl1111 is already in a data parallel or vectorisable form.

For HPF, tl1e cost array are disu·ibuted blockwise by rows. Anotl1er copy of
tl1C array is made and clisu·ibuted blockwise by columns across parallel pro
cessors. The follmving statements are added to tl1e serial code explicitly to map
tl1e data on to parallel processors:

!HPF$ DISTRIBUTE cij (BLOCK, *)

!HPF$ DISTRIBUTE cijc(*,BLOCK)

!HPF$ DISTRIBUTE rn(BLOCK, *)

!HPF$ DISTRIBUTE mcol(BLOCK,*)

Tllis mapping has to reflect tl1e way tl1e data are to be accessed or performance
will be greatly affected. The serial data generator was u·ansformed to a data par
allel version. The subroutine generating tl1e data was moclified not to cause sicle
effects and converted into vvhat is called a 'pure' subroutine. In tl1e serial code,
tl1e (T{cdicrcdl mau·ix is stored in sparse format in a one-climensional array witl1
an additional integer array for indexing. This approach was beneficial in terms of
memory requirements. However, it could not be directly implemented in HPF,
which lacks a conve1lient way for tl1e indirect addressing of data. Instead, tl1e
sparse mau-ix, was substituted by a regular matrix wllich !oses tl1e benefits of
sparse storage. HPF implementation of the benchmark contains a number
of !HPF$ INDEPENDENT statements in front of tl1e DO loops in tl1e source
code. Examples of statements converted into a parallel form by inserting the

258 Putting it ail together

!HPF$ INDEPENDENT directive are shown in Appendix 10.1. Finally, HPF
allows a programmer to map and tune an algorithm on to a target architecture.
Preliminary experiments with tuning did not deliver any significant performance
improvement for the code rumùng on the Cray T3D.

10.5 The message-passing code using MPI

The main reason for choosing the message-passing programming mode! is the
portability of the benclunark which could be aclùeved by using a global standard
for message passing- MPI and MPI2, wlùch are now available on a wide variet)'
of parallel architectures .

The efficiency of data distribution is very critical because both forms of spatial
interaction models, like many other GIS problems, are data-intensive and mem
ory-bounded. In tlùs case, tl1e data distribution strateg)' affects tl1e size of tl1e
problem that can be computed on a parallel system. For tl1e MPI implementa
tion, tl1e simplest data distribution strateg)' would be to broadcast tl1e entire
(C;d mau·ix to each processor. Tlùs is an efficient metl10d in terms of tl1e
amotmt of inter-process commrnùcations reguired, as tl1e mau-iJ[is accessed in
read-only mode by each processor. However, tl1is would severely limit tl1e size of
the data sets tl1at can be used for benchmarking. Instead, tl1e (C;i l mau·ix must
be disu·ibuted (or generated) blockwise to each processor. Different su·ategies
are reguired for each of tl1e two models .

For the singly constrained mode!, tl1e partial sums of u·ips and partial sums of
origins are computed on separate processors. The values are communicated to
tl1e master processor, where tl1e reduction followed by broadcasting talces place.
While computing tl1e mode!, each processor works (in parallel) on its own
separate block of data . It computes a block of rows of tl1e (T{"1icrcd l using tl1e
block ofrows oftl1e (C;il matrix needed for tlùs task. Finally, each processor, com
putes partial error measures tl1at are collected by tl1e master processor, where
tl1e global reduction talces place and tl1e final global errors are computed.
Computation of tl1e mode! reguires very little inter-process commmùcation,
wlùch talces place only in tl1e last step where tl1e partial error sums are reduced
(viz. added togetl1er to form a global sum) .

For the doitbly constrained mode! tl1e same data disu-ibution su·ategy is used,
witl1 tl1e exception tl1at tl1e 1 C;i l values now also need to be distributed by
columns. Each block of rows generated by an individual processor is divided into
smaller chunks contai1ùng blocks of columns and tl1en scattered among other
processors. This task, wlùch is also performed in parallel, ensures tl1at each
processor bas in its local memory tl1e block of rows and tl1e block of columns of
the cost mau·ix tl1at it will be working on.

Equations (10.6) and (10.7) imply tl1at tl1e values of A, and Bi terms are fonc
tions of each other and have to be estimated iteratively tmtil the reguired con
vergence criterion is satisfied. The use of a convergence criterion would result in
variable amounts of computational work being performed as tl1e amount of data
changed over and above tl1at due to problem size changes. To avoid tlùs, tl1e

M easuring performance using MPI and serial code 259

number of iterations performed to compute tl1e A, and Bi is fixed at twent)'. The
parallel algoritl1111 first sweeps forward across tl1e rows computing tl1e A, values
and commrnùcating tl1em to other processors and tl1en sweeps across tl1e
columns computing tl1e Bi values and con111rn1ùcating tl1em to al! otl1er pro
cessors. This process is repeated until a fixed number of iterations bas been
performed. The basic operations for tl1e doubly consu·ained mode! and tl1e cor
responding commrnùcation pattern are shown in Appendix 10.2 .

Finally, after A, and Bi have been calculated and commmùcated to al! processors,
each processor computes a block of rows of tl1e (T{cdicrcd l matrix and tl1e partial
error measures tlut are collected by tl1e master processor, where tl1e global reduc
tion on them talces place and tl1e global errors are obtained. Note tl1at for tl1e DC
mode! computations are interspersed witl1 tl1e communication between processing
nodes. It is also a good problem on wlùch to practise parallel decomption skills.

10.6 The btùk synchronous parallel model

The bull< synchronous parallel (BSP) mode! has not previously been described in
tlùs book. It is one of a few alternative pronùsing parallel-programming models.
The original idea was proposed by Valiant (1990). Since tl1en, it bas been devel
oped into a general-purpose approach to parallel computing at Oxford
U1ùversity by McColl and otl1ers. They believe tlut it offers a robust mode! for
parallel computation, witl1 tl1e prospect ofbotl1 scaleable performance and archi
tecture-independent software. The code for tlùs version of tl1e spatial interaction
mode! is also available via David Renty of tl1e EPCC, Edinburgh U1ùversit)' ;

see http : / /www.ccg.leeds.ac.uk/

for details of where it can be downloaded. The BSP mode! is atu·acting much
attention from computer scientists because it bas some 1ùce tl1eoretical proper
ties. It is uncertain as yet whetlier it constitutes a practical tool.

10.7 Measuring performance using MPI and serial code

The aim of benchmarking is to compare tl1e performance of different computer
systems in relation to tl1e representative application being used for tl1e bench
marl<. The performance indicator used here is tl1e elapsed execution rime for one
evaluation of tl1e mode!. Tlùs is an absolute meu-ic . It indicates wlùch hardware
performs best rumùng tlùs type of application. In otl1er words, it allows the user
to identify tl1e platform (witl1 tl1e smallest value of tl1e performance indicator)
tlut is seemingly most sui.table for running code tlut has a similar mix of com
putations to tlut of tl1e benclunark. Note tl1at as in al! benchmarks problems of
a dissimilar computational su·ucture may perform very differently. HPC hard
ware is notoriously guirlcy, and tl1e selection of hardware is nearly always going
to favour some applications more than otl1ers.

A number of computer systems have been evaluated using tl1e benchmark,
ranging from PCs tlu·ough workstations to vector processors and massively par
allel systems. Table 10.1 presents tl1e results (tl1e elapsed execution rime for one

260 Putting it all together

Table 10.1 Resu.lts for the parallel singly constrained mode! with 1000 origins and
1000 destinations.

System name Nu1nber of Time (ms) Relative
processors pe~fonnance

SGI Origin 14 46.2 180.8
SGI Origin 12 52 .1 160.3
Cray T3D 256 61 136.9
SGI Origin 10 62 134.7
SGI Origin 8 78.5 106.4
Cray T3D 128 129 64.7
SGI Origi.n 4 154 54.2
SGI Onyx 4 173 48.3
Cray T3D 64 202 41.3
SGI Origi.n 2 323 25 .9
Cray T3D 32 439 19.0
SGI Power Challenge 4 530 15.8
IBM SP2 8 560 14.9
Cray T3D 16 796 10.5
Cray J90 8 847 9.9
IBM SP2 4 1060 7.9
SGI Challenge 4 1479 5.6
Cray T3D 8 1580 5.3
Cray T3D 4 3186 2.6

Sottrce: Openshaw and Schmidt (1997) .

evaluation of the mode!) for the origin-constrained mode! with 1000 origins and
1000 destinations for different parallel platforms, and Table 10.2 for some serial
HPC hardware. Note that the third column contains the execution rime of the
benchrnark and the fourth colunm the relative performance of the system, which
has been computed as the execution tirne of the benchmark on the system under
eva.luation divided by the execution time of the benchma.rk on a 133 MHz
Pentium PC. Tables 10.3 and 10.4 present eqtùvalent results for the doubly
constrained model.

The relative performance measure suggests that the singly constrained mode!
runs 137 times faster on the 256-processor Cray T3D than on a PC, but the
doubly constrained model runs only 86 rimes faster in comparison with a PC
run. This may be due to a large amotmt of inter-processor message passing in
the doubly constrained model. It is also a reflection of the sma.ll (by HPC stan
dards) problem size. Note a.lso that the 1000-origin by 1000-destination sizes
were the la.rgest that cou.Id be run on all available platforms. Fina.lly, the problem
size with 25000 X 25000 origin- destination pairs computed very quickly (13
seconds for the si.ngly constra.ined mode! and 570 seconds for the doubly con
strained model) on the 512-processor Cray T3D. However, dus size of
mode! cou.Id not be computed on any of the other systems because of memory
restrictions. This illust.rates another benefit of HPC: large real memory sizes.
Benchma.rk resu.lts for other problem sizes and systems are available on the

A comparison of HPF and MPI codes 261

Table 10.2 Results for the serial si.ngly constrained mode! with 1000 origi.ns and
1000 destinations.

System name Number of Timc(s) R clati11e
proccssors pe1forinance

Fujitsu VPX s 170 49.1
DEC Alpha 600 s 729 11.5
SGI Origin s 730 11.4
SGI Onyx s 900 9 .3
DEC 8400 s 988 8.5
SGI Power Challenge s 1744 4.8
Sun Ultra-2 s 2144 3.9
Sun Ultra-1 s 2491 3.4
HP9000/ K460 s 3110 2.7
HP9000/C160 s 3180 2.6
SGI Indy s 3645 2.3
IBM SP2 s 4743 1.8
Cray CS6400 s 5122 1.6
Cray J90 s 6085 1.4
SGI Challenge s 6360 1.3
Pentium PC s 8351 1.0
Sun 10/41 s 8459 1.0
Cray T3D s 12832 0.7
KSRI s 22379 0.4
486 PC s 33242 0.3

Som-ce: Openshaw and Schmidt (1997) .

World Wide Web and are discussed more fully m Openshaw and Schmidt
(1997).

10.8 A comparison of HPF and MPI codes

The benchma.rk can a.lso be used to measure the performance of HPF relative to
MPI. The Portland Group's High-Performance Fortran (pghpf) compiler was
used for tl1e HPF nms. Table 10.5 contains tl1e restùts for tl1e singly constrained
mode! for tl1e problem size 1000 by 1000, and tl1e results for tl1e 5000 by 5000
problem size are given in Table 10.6.

The speed-up factor is computed as:

S(M) = T(l)/ T(M)

where T(1) is tl1e execution time of the benchmark on 1 processor and T(M) is
tl1e execution time on M processors. Calculating tllis factor, we used as T(1) tl1e
elapsed execution time of one mode! eva.luation for each implementation on
tl1e Cray T3D. The speed-up statistics show how well botl1 implementations
performed witl1 an increase in tl1e number of processors.

Table 10.3 Results for the parallel doubly constrained mode! with 1000 origins and
1000 destinations.

Syste1n naine Number of Time (s) RelatiFe
processors pe1fonnance

SGI Origin 14 1.57 155.5
SGI Origin 12 1.76 138.8
SGI Origin 10 2.08 117.4
SGI Origin 8 2.59 94.3
Cray T3D 256 2.83 86.3
Cray T3D 128 4.41 55.4
SGI Origin 4 5.12 47.7
SGI Onyx 4 5.39 45.3
Cray T3D 64 6.67 36.6
SGI Origin 2 10.5 23.3
Cray J90 8 14.5 16.8
Cray T3D 32 14.5 16.8
IBM SP2 8 20.8 11.7
SGI Power Challenge 4 22.4 10.9
Cray T3D 16 25.7 9.5
IBM SP2 4 41.2 5.9
Cray T3D 8 51.4 4.8
SGI Challenge 4 67.9 3.6
Cray T3D 4 102.7 2.4

Soui-cc: Openshaw and Schmidt (1997) .

Table 10.4 Results for the serial doubly constrained mode! with 1000 origins and
1000 destinations.

Syste1n naine Number of Time (s) Relatiw
processors pe1fonnance

Fujitsu VPX s 6.56 37.2
SGI Origin s 19.2 12.7
SGI Onyx s 19.5 12.5
DEC Alph 600 s 24.0 10.2
DEC 8400 s 34.3 7.1
SGI Power Challenge s 72.0 3.4
Sun Ultra-2 s 73.5 3.3
Sun Ultra-1 s 87.6 2.8
Cray J90 s 88.0 2 .8
HP9000/K460 s 102.5 2.4
HP9000/Cl60 s 103 .3 2.4
SGI Indy s 129.3 1.9
IBM SP2 s 166.9 1.5
Cray CS6400 s 167.5 1.5
SGI Challenge s 196.0 1.2
Pentium PC s 244.2 1.0
Sunl0/41 s 277.7 0 .9
Cray T3D s 457.0 0.5
486 PC s 1045.8 0.2

Source: Openshaw and Schmidt (1997) .

A comparison of HPF and MPI codes 263

Table 10.5 Comparison of MPI and HPF using the singly constrained mode!.

Nmnber SC 1000 X 1000 problem sizc
of
proccssors HPF execution HPE MPI cxecution MPI RelatiFc

time (ms) speed-up time (ms) speed-up difference for
HPF&MPI (%)

1 13697 lDO 11351 1.00 20.67
4 3422 4.00 2943 3.86 16.28
8 1709 8.01 1294 8.77 32.07

16 864 15.85 644 17.63 34.16
32 440 3113 327 34.71 34.56
64 221 61.98 165 68.79 33.94

128 112 122.29 83.3 136.27 34.94
256 57 240.30 43 263.98 32.56
512 30 456.57 22 515 .95 36.36

Table 1O.6 Comparison of MPI and HPF using the singly constrained mode!.

Number SC 5000 X 5000 problem size
of
processors HPF execution HPF lvIPI execution MPI Relative

time (ms) speed-up tiine (ins) speed-up difference for
HPF&MPI (%)

16 * 15997 16.07
32 10937 32.00 8032 32.00 36
64 5506 63.56 4036 63.68 36

128 2786 125.62 2038 126.12 37
256 1395 250.88 1022 251.49 36
512 699 500.69 515 499.08 36

Note: *there was insufficient memory to run this size of problem with 16 processors.
Soui-ce: Openshaw and Schmidt (1979).

The relative difference is calculated as follows:

D(M) = (T1v1r1(M) - THrF (M)/T~·1r1 (M)

where T HPF (M) is the execution rime for HPF implementation and T1v1ri (M) is
the execution rime for the MPI implementation. The values show the degree to
which the MPI irnplementation outperforms the HPF implementation.

The MPI implementation of the singly constrained mode! performed better in
terms of the execution rime than the HPF implementation for both problem sizes
on the Cray T3D. For the 1000 by 1000 problem size, the relative difference for
the four processor job is approximately 16 percent. With an increase of the num
ber of processors to eight, the relative difference doubles to 32 per cent and then
increases slightly to 36 per cent for different numbers of processors up to 512.
The 5000 by 5000 HPF implementation produces results on average 36 percent

264 Putting it all together

Table 10.7 Comparison of MPI and HPF using the doubly constrained mode!.

N umber DC 1000 X 1000 problem size
of
processors HPF execution HPF MPI execution MPI R elative

tiine (s) speed-up tim e (s) speed-1.tp difference for
HPF & MPI (%)

1 433 1.00 441 1.00 1.81
4 109 3.97 124.4 3.55 12.38
8 54.4 7.96 54.29 8.12 0.20

16 27.7 15 .63 27.17 16.23 1.95
32 14.5 29.86 13.9 31.73 4.32
64 8.44 51.30 7 .13 61.85 18.37

128 8.18 52.93 3.94 111.93 107.61
256 19 22.79 2.86 154.20 564.34
512 65 6.66 3.02 146.03 2052.3

Source: Openshaw and Schmidt (1997).

Table 10.8 Comparison of MPI and HPF using the doubly constrained mode!.

N 7.mibcr D C 5000 X 5000 problem size
of
processors HPF execution HPF MPI exccution MPI Relative

time (s) speed-up timc (s) speed-1.tp diffe1u1ce for
HPF & MPI (%)

16 672.09 21.65
32 353.7 32 454.8 32 .0 22
64 179 .8 62.95 208 .9 69 .67 14

128 96.6 117.17 87.9 165.57 10
256 64 176.85 44 .9 324. 13 43
512 90.7 124.79 29.9 486.74 203

N ote: *there was insufficient memory to run this si ze of problem with 16 processors.
Source: Openshaw and Schmidt (1997).

worse than the MPI implementation. This high relative difference between imple
men rations is due to the type of the mode! un der consideration in which the ratio
of memory references to computations is very high. The computation of this
mode! involved very little inter-processor communications, so the main overheads
were probably due to tl1e creation ofparallel threads and building ilie communi
cations schedule into tl1e HPF implementation. Nevertl1eless , given t11e simple
and highly data parallel nature of t11e singly consu·ained mode!, tlus is a very dis
appointing result for HPF and must cast doubts over its usefulness in tl10se appli
cations where ma.,\'.Ïmum execution time performance is required .

Tables 10.7 and 10.8 contain equivalent results for tl1e doubly consu·ained
models. The 1000 by 1000 mode! shows approximate linear scaleability up to
64 processors . However, witl1 more processors performance no longer scales.
Tlus is most evident for tl1e HPF implementation, which achieves a scaleability

C onclusions 265

of 51 for 64 processors and 53 for 128 processors but to only 7 for 512 proces
sors! The MPI implementation wit11 64 processors displays a scaleability of 62,
which slowly increases to 146 for 512 processors . Witl1 a large num ber of
processors, tl1e workload per processor is very low and tlrns tl1e overheads of
parallelisation and commu11Îcations prevent t11e performance of t11e mode! scal
ing. For example, for tl1e 128-processor run each processor had only eight rows
of data to work on before commmlicating ilie values and t11en worked on eight
columns, and again t11is was followed by communication. Tlus process was
repeated for twenty iterations to compute t11e Ai and Bi terms before tl1e mode!
was computed. The doubly consu·ained mode! results demonsu·ate tl1at tl1e user
must be aware of tl1e type of operations in an application when u·ansfornung it
to a parallel version. The ratio of commmucation to computation in an applica
tion must be known to choose t11e best number of processors for tl1e job. The
HPF implementation brings additional overheads, but tl1ese are only easily
recovered for small numbers of processors, where tl1e amount of work per
processor is larger.

The HPF implementation for tl1e 5000 by 5000 problem size obtains a
scaleability of 117 for 128 processors and 124 for 512 processors . However, the
MPI implementation scales linearly up to 512 processors although it is possible
tl1at wit11 a furtl1er increase in t11e number of processors tl1is implementation will
not scale much furtl1er for reasons given earlier. Tllis is also a reflection of
Amdal1l's law. The solution is to scale up tl1e problem size as tl1e number of
processors increases. The problems seen here would t11en disappear. Finally, t11e
very poor performance of t11e HPF implementation is ratl1er disturbing. It is
questionable whet11er tl1e gains in ease of programming using HPF are wortl1
the Joss of performance in HPC. After ail , HPC shmùd be most useful for tl10se
applications on tl1e edge of what is computable, and it is here where squeezing
tl1e last drops of speed out of a code, a compiler and hardware is likely to be
most wortl1 wlule .

10.9 Conclusions

Tllis chapter has briefly described a social science benchmark (SSB / 1) code suit
able for measuring t11e performance of tl1e widest possible set of HPC hardware
on a representative social science and geographical computational problem. The
benchmark is thought to be a useful means for geographers and ot11er HPC
users to quantify t11e performance of tl1e diversity of computational systems tl1ey
have or could have access to. A large number of performance results have been
collected, and only a few have been reported here; iliese are available on t11e
World Wide Web; see

http:/ / www.leeds.ac.uk/ ucs/ projects/ benchmarks

The performance tables express HPC developments in terms of t11e hardware
iliat was available for geographers to use in tl1e period 1994-1998 . However,

266 Putting it ail together

such is the current rate of improvement in hardware speeds that it is important
for the performance results that are presented to be updated regularly. Knowing
how fast a computer runs is fondamental to geographical users ofHPC as well as
being interesting in its own right. Meanwhile, the reader has access to different
versions of code for the sa.me mode!. They are cordially invited to see whether
their versions of MPI or HPF or HPC hardware can do much better.

Appendix 10.1: HPF code fragment for a singly constrained
spatial interaction model

!HPF$INDEPENDENT ,NEW(kl,k2, t,j,icol,aa,pred,surn,b,
add on) ,and !HPF$& REDUCTION (fl,f2,cl)

11

12

DO 33000 i=l, n
kl=ip (i)
k2=nurn (i)
DO 11 j=l, m
t (j)=O . O

END DO
IF (k2 . ge . kl) then

DO 12 j=kl, k2
icol=mcol (i,j)
t (icol)=rn (i,j)

END DO
ENDIF
surn=O.O
DO 14 j=l, m
aa=beta * cij (i, j)
IF (aa.gt.prec) aa=prec
IF (aa.lt. - prec) aa= - prec
pred=exp (aa) * d (j)
addon=cij (i, j) **alpha
pred=pred * addon
surn=surn + pred
b (j)=pred

14 END DO
IF (surn . lt . small) surn=smal l
surn=o (i) / surn
DO 384 j=l, m
pred=b (j) * surn
fl=fl + (pred-t (j) **2
f2=f2 + abs (pred-t (j))
cl = cl + pred * cij (i, j)

384 END DO
33000 END DO

Paraltelisation of a doubl.y constrained spatial interaction mode! 267

Appendix 10.2: Parallelisation of a doubly constrained
spatial interaction model

mastcr nodc communicates to each processor:

data generation on each (r-th)processor:

master node reduces and broadcasts:

each processor communicates to others:
cach processor computes:

master node reduces:

master node computes and broacasts:

loop for 20 iterations:

each processor (r-th)computes:

each processor comm unicates to master:

master broadcasts:

master node reduces rcceived partial SAr:

each processor computes:

master node reduces received partial SJf:

master node computes and broadcasts:

each proccssor computes:

cach proccssor communicates to mastcr:

cach processor computes:

master nodc reduccs partial errors:

master nodc computes:

maste r nodc broadcasts the error norms:

istart,iend; jstart,jend; n, m, nproc, alpha , bcta

Ck; , k = istart, .. .,iend; j = 1 , ... ,m

T kiobscrrnl , k = istart , .. ,iend; j= 1,. .,m

Oi, i = 1, ... ,n

partial values of Dri ,j = 1, ... ,m

I'

Dj = L ,m
,. \

ckl 1 k = istart , .. .,iend; 1 = jstart, . . . ,jend
i..:cnd ' \ i..:cnd

T' = L L Tubs~rn:d . O' = L O,; kj 1

k=Î~!.lrt j= l kzz i~t ;lrt

i..:cml '1

Z' = L L T;';"""."1f(C,;)
kao isun i - 1

!' I' I'

T = L T' ; 0 = L O' ; z = L Z'
r - 1 r-l r .. \

K= Z/0

~ ~

A,= L B,f (C,;), K = istart, .. .,iend; SA'= L A,
j z l k >=i> l3rt

Ak, k = istart, .. .,iend

A;, i = 1, .. . ,n

SA=± SA'
r= I

B1 = L A,f (Cil), 1 = start ,. . .,jcnd; SB' = ;~ B1
i= 1 l "'i~1.lrt

SB =±ss'
r =I

f=SB/SA

B1=D1 B1 / f, l=jst:trt, .. .,jend;

B1, l=jstart, .. ,jend

i..:cnd

F' = L L (Tf;''"""' - T,j'""'''d) 2;
k = i~IUI j= I

i..:cml

G' = L L m;"1
k"• - T;;1""'"'l ;

k =i~un j= I

kcnJ

H' = L L Tr["';,"'1 f(C,;)
k=isrJrt j= I

I' [' I'

F = L F': G = L G'; H = L H'
r=I r= l r• l

E = (K - H/0))
2

E,F;G

Il Epilogue for geographers and
social scientists

This chapter stands back from the intricacies ofHPC and parallel processing and
looks briefly at the context within which these developments are located. It
attempts to identif)r some of the new opportunities for the greater use of HPC
in a socially responsible way. In some ways, it builds on the arguments of
Chapters 1 and 2 and attempts to project them into the future world of the
twenty-first century.

11.1 The global challenge

A professor of computer science at the University of Newcastle upon Tyne once
said 'tl1at faster computers merely allowed users to malce more mistalces faster'.
He was probably right. HPC certainly creates an environment witlun wluch
users can make tl1e most colossal of errors! Parallel programnung is a major
mistalce-facilitation tool of lustorically unprecedented power! However, tl1is
power and speed is also why HPC is such a key technology. In common witl1
many otl1er scientists, geographers need HPC (as indeed do man y of tl1e social
sciences) to cope witl1 the rapidly increasing complexities associated witl1 study
ing most aspects of tl1e modern world. The complaint at present is tl1at not only
are we failing to cope but also tl1at many of tl1e contemporary metl10dologies
and tools are actually moving backwards into qualitative descriptions of tl1e
muque ratl1er tl1ai1 even stai1ding still. Instead of trying to compute our way out
of ai1 immense data inundation tl1at continues to grow in botl1 intensity ai1d
deptl1 of coverage, too many of our colleagues have given up using advanced
informatics, preferring instead to observe tl1e effects on otl1ers. The world needs
botl1, but neitl1er pai·adigm is by itself sufficient.

People's behaviom is now known to be fai· more complex and difficult to
understand tl1ai1 we previously dared to fear. There are tl1ree furtl1er complica
tions. Ali over tl1e world, humai1 behaviour is changing, and tl1e intensity and
frequency of social-economic- physical interactions ai·e botl1 increasing ai1d sluft
ing with new patterns ai1d forms of spatial human, economic and perhaps polit
ical orga11isational structmes appearing at mai1y different scales and levels of
generalisation. If t11at is not sufficient, starie cross-sectional models of tl1e recent
(often the not so recent) past now desperately need to be replaced by dynamic

The gl.oba/. challenge 269

models of micro-and macro-behaviour ai1d patterns capable of functioning in
real rime in a proper spatial setting .

Major new global challenges are becoming evident tl1at will require a sub
stai1tial research response involving HPC, probably very soon. Here ai·e just a
few of a growing list.

1 Global climatic change could conceivably affect billions of people , but we
have no good idea of what tl1e human or economic effects may be or how
to mode! or forecast tl1em or tl1eir geograplucal distribution and intensity.
Seemingly, we are close to a global environmental catastrophe oflustorically
unparalleled dimensions, but not a single flop of HPC is currently being
devoted to exploring and understai1ding ai1y of it.

2 Most of tl1e world's population now lives in urbai1 areas, but tl1e best mod
els we have of tl1C dynamics and growtl1 of urbai1 ai·eas ai·e about tlurty yeai·s
'old' ai1d reflect quite different interests ai1d historical periods, as well as
being constrained by what can be termed tl1ose palaeo-metl1odologies tl1at
pre-date HPC. Is tlus sensible? Why ai·e tl1ere not HPC-based plaiuung
models able to simulate and hence better inform the lai1d-use plaiuung
process? Is it acceptable to use plaiming metl10dologies tl1at have scai"Cely
changed since the Second World War?

3 Increasingly, people live in areas polluted by chemicals released into tl1eir
living environments . How can tl1e conu·ollable human and institutional
systems be orgaiused, changed, even manipulated to reduce tl1e potential
healtl1 risks? What are tl1ese risks? What geographical monitoring systems
ai·e needed to provide assurance tl1at major epidernics are not occurring?
Why do tl1e guai·dians of public healtl1 and safety have no access to HPC to
help to answer tl1ese questions? Why are they so self-confident in t!Kir
legacy technologies tl1at, maybe, tl1ey see no need even to u·y? Why are tl1ey
so unaware?

4 Why do we continue to gatl1er data ai1d store it if tl1e systems for its
analysis and modelling caimot cope witl1 more thai1 a very conservative
0.0001 percent ofit? How should we cope witl1 tl1e data flood? What new
rnachine-based inductive lmowledge-creating tools ai·e now required, ai1d
what will it talce to build tl1em? To what extent is tlus a muquely geograph
ical problem, and how can HPC be used to resolve it?

5 Why do tl1e GIS systems we have today have so few new fimctionalities
compared witl1 ten years ago? The geo-data fonctions have not extended
much beyond geo-data collection, but tl1is is no longer sufficient. Once it
mattered much Jess tl1ai1 now. What cai1 be done about it? Is it a reflection
of a Jack of computing power? Or is it a Jack of imagination? Is it a lack of
awareness?

6 Why do so rnany human geographers shut tl1emselves off from tl1e chal
lenges of coping with tl1e modern digital world, ignoring ail tl1e data, fail
ing to leai·n any IT-related skills ai1d becoming u·apped in an absu·act
self-critical conceptual black hole of tl1eir own creation? Instead of watclung

270 Epilogue for geographers and soc ial scientists

and describing people and organisations failing to cope, maybe we should
start offering geo-help. The underlying assumption seems to be that you
cannot have a scientific approach to studying people and society, because
the task is too difficult for statistical methods to cope with it. Maybe, his
torically spealcing, this observation was more correct that it is today. HPC
change~ ev.erything and provides the powerhouse for developing entirely
new soent:Jfic humai1 geographical methodologies if we wai1t them and
more significantly, if sufficient human geographers have tl1e slcills to enabl:
t11em to develop new tools , new models and new metl10dologies. Modern
human geographers have (in theory) so much to offer but, in common witl1
mai1y otl1er social sciences, tl1ey have seemingly and apparently deliberately
chosen to do notlung but serve tl1eir own overly self-const:Jc1cted scholarly
concerns, lai·gely oblivious to tl1e greater and more urgent needs of tJ1e
outsi.de world t11ey daim to study. Even worse, tl1ey reuse, reinterpret and
reclaun tl1e vocabulary of the earlier scientific geography but assign a new
but distorted mea11Îng tlut has notlung to do witl1 science. They abuse t11e
words, t~sing tl1em as a veneer to hide tl1eir own intellectual shortcomings
and, while totally denymg ail scientific affiliations, tl1ey 'basic' in tl1e intan
gible scholastic benefits t11at tl1eir scientific fraud gives tl1em. Their greatest
~hallenge now is to start to become computer-oriented by 'importing' tl1eir
1deas 111 a computer (not statistical or mathematical form or literary form).
May be tl1ey have much to cont:J·ibute to understanding tl1e world of tomor
ro~; maybe t11ey ha:e. not11ing. However, witl1out some means of testing or
vahdat:Jng or formal1s111g or standardising or reconstructing tl1eir ideas in a
computer-compatible form, no one will ever know. If tl1e 'tl1eories' have
sometl1ing important to say about tl1e processes and operation of the mod
ern w~rld, if they are indeed sig11Îficai1t additions to collective knowledge
and w1sdom, tl1en some means needs to be found of 'using tl1em'. If tl1ey
can account for what is missing, tl1en why not create computer systems and
mo~els. that in.clude in tl1em t11e essence of tl1eir tl1eories? Tlus may entail
env1sagmg enurely new and completely different computer-based metl1od
ologies . What ofit? Just because it has not been done before does not mean
t11at it caimot be done now. Just because tl1ese metl10dologies do not exist
does not mean tl1at tl1ey cannot be invented soon. Engagement ai1d geo
computational t:J·anslation would be both ai1 interesting experiment and a
~m~amentally important activity for tl1e twenty-first century. It will
111e:1tably become increasingly difficult for humai1 geographers to sustain
t11eir 1gnorai1ce of tl1e realities of having IT in a 100 percent digital world
for much longer. No matter how far you ret:J·eat into the depths of
obscure sociology or lustory or cultural antlu·opology, tl1ere is no escape
from the digital realities. HPC provides a basis for bringing t11is world
back into science.

7 There is a growing etl1ical imperative for geographers to return to using and
developing tl1eir t:J·aditional map skills . The 'where' component is even more
important tlun previously in a data-drenched world. But so too is tl1e 'why' .

The global challenge 271

New ways of using tl1e location dimension of geoinformation need to be
devised. What exists today is a legacy teclmology t11at bas been com
puterised and given a modern 'feel' , but tl1e tools t11emselves need up
dating. HPC bas a pivotai role to play here.

8 Survival at all levels will increasingly depend on compa11Îes, agencies , coun
t:J·ies ai1d disciplines discovering how to make 'good use' of t11eir databases.
They need to understai1d individual behaviour while investing notlung in
basic research. Reseai·ch councils t!U"oughout tl1e world are seemingly
charged witl1 tl1is responsibilit:y, but tl1ey ai·e massively under-resourced and
are still firmly wedded to research agendas tliat largely pre-date tl1e 1990s.
They are still focusing far too much on t11e tl1emes and priorities ofyesteryeai·
wlule laclcing t11e vision and pro-activity needed for t11e world of next year.

9 Governments also need to understand more about t11e concerns ai1d inter
ests of tl1eir citizens. An Internet digital democracy has tl1e potential to
change mai1y established procedures, especially where tl1e issues ai·e hard,
contentions and a cause of great public concern. However, electr011Îc refer
enda are no substitute for a nucro-understanding of human behaviour in
key areas of state importance so tl1at attitudes ai1d behaviours may be better
understood and, where importai1t to tl1e good functimung of society and
government, predicted . Governments ail over tl1e world are increasingly
being forced by circumstances beyond tl1eir cmm·ol to adopt policies that
require chai1ges in behaviour patterns or rest:J·ict public freedoms, e.g. to
combat traffic congestion and t:J·ansport-related atmospheric pollution. To
be successful, you need to be able to model tl1e likely response ai1d tl1en
correctly forecast tl1e long-term outcome . This is a serions practical problem
tl1at currently cairnot be hai1dled except in a most facile way. Even tl1e econ
omic modelling of national economies is laughable in its Jack of soplustica
tion, starved of resources, ai1d almost a complete joke in terms of the
underlying science, yet tl1e consequences of error ai·e massive. It needs to be
done properly, and t11is would appear to require computational models as
complex as any found in otl1er areas of science, nota set of 1960s-style lin
ear simultai1eous equations run on a PC. Why does tl1e Bank of England
not use a Cray T3E (or faster maclunes) to assess tl1e effects of interest rate
rises on tl1e British economy? The subject is so important as to justify virtu
ally anytlung! Cost is not a relevant factor when errors cost billions! The
problem is tl1at bankers are not ürnovative; tl1ey are just pathetic Î.11 tl1eir use
of old metl1ods tl1at were more appropriate to tl1e 1960s, but tl1ey get away
witl1 it! Why? How cai1 it be tl1at tl1e economic plaiuung of major developed
count:J·ies is so poor? Do tl1ey even realise what is now possible?

10 A major crime occurs. Society expects tliat ail available resources be used to
apprehend t11e criminal(s) responsible . Yet Î.11 the long lustory ofHPC, what
fraction of ail Mflops has ever been devoted to eitl1er crime pattern ai1alysis
or crimü1al detection? Is it 0 .0 or 0 .00000001 percent? Why?

11 We live Î.11 a world facing global climate change, but essentially we Jack tl1e
science necessary to (1) prove beyond reasonable doubt tl1at it is

272 Epilogue for geographers and social. scientists

happening; (2) identify with a reasonable degree of certaincy what the
impacts will be; (3) indicate the speed of possible changes; and (4) measure
the possible effects on people and society. If this issue is really of earth
shattering importance and could affect billions of people then why are we
not devoting billions of research pounds to developing a better understand
ing of the physical and human processes? It really does matter, but the
world is just not treating it with the seriousness it should. Why?

12 'Big Brother' exists but is currently ineffective, clumsy and laughable.
However, many areas of a future world would benefit from benevolent
computer systems designed to improve tl1e 'public good' . Openshaw
(1992) outlines a few possibilities. At present, we do not have a good idea
of how to do much of it. It is not about the infringement of civil liberties or
privacy but merely an attempt to ensure tl1at some more of tl1e evils and
dangers of tl1e modern world can be reduced, managed or (ideally) avoided.

11.2 What has HPC got to do with any of this?

That should be obvions. It is a key enabling technology on which many of tl1e
necessary tools will one day have to be built. The modern and future world is a
100 per cent digital world. It is important to corne to terms witl1 what tllis
means. Currently, our teclmological abilities to build HPCs, and gatl1er and
store data far outsnip tl1e abilities of geography and tl1e social sciences to do vir
h1ally anytlling at ail useful witl1 it. The same applies to counu·ies and most com
pa.tlies. Yet in a digital world you ca.imot ignore it for long. The question now is
whetl1er or not HPC offers a way of computing our way out of many of tlle
problems of today's world. Does computation provide tl1e basis for new tools
that a.i·e better able to cope? Does it offer a paradigm tl1at can tl1rive on massive
data, incorporate soft knowledge a.t1d rack.le at least some of the world's pressing
problems? In short, does computation provide a viable basis for a new science of
geography a.i1d even for putting some of tl1e science back into social science?

The short answer is yes. You could add 'but' as a qualification. Indeed, we are
convinced tllat it does, but it will only do so if more geographers a.i1d social
scientists can start to grasp tl1e opportunities, lea.tïl tl1e new skills and evolve
tl1eir computational tllinking from where it is now to where it could be if they
tl1ought more along tl1e lines of a computational physicist or chenlist or aero
nautical engineer applied to a human context. It carmot be done overnight, but
the rime to start is most defulitely now.

11.3 Revising the definition of geocomputation

To geographers, tl1e emergence of geocomputation as a late- l 990s pa.i·adigm is
interesting; see Longley et al. (1998), Openshaw and Abrahart (1999) The
original idea of geocomputation is a good one, but it is also a little deficient.
Geocomputation was invented in 1996 to reflect a fusion of tl1ree key tech
nologies of interest to tl1e geosciences:

Revising the defmition of geocomputation 273

1 HPC (lligh-performa.tice computing);
2 AI (a.i·tificial intelligence, computational intelligence); a.i1d
3 GIS (geograpllical information systems).

It is deficient only tl1at tl1ere needs to be a.tl explicit fourtl1 component:

4 HSM (huma.i1 systems modelling)

It malces less and Jess sense to mode! processes in tl1e physical environment witl1-
out also including people and sociecy as processes, even in tl1e physical systems
being investigated. People live on river terraces and have done so for almost as
long as tl1e fluvial processes acting on landscapes tl1at appeared from under tl1e
last Ice Age. People are a geomorphological process as much as water is! Also,
lest we forget, global climatic cha.i1ge is created by human systems interacting
witl1 global environmental processes. It is rime tliat efforts were made to btùld
computer models of tl1e principal human systems witl1 tl1e evenh1al goal of mod
elling individual people a.t1d tlleir basic space-time patterns of behaviour. It is no
longer sufficient merely to understand tl1eir culhlre but to improve tl1e scientific
understanding sufficiently to allow us to begin to btùld predictive models of
people a.i1d tl1eir behaviour patterns tl1at matter. HSM is not a.i1 easy option. The
computer metl1odologies needed to malce it happen in general do not yet exist,
except in a most rudimenta.i·y form. Most of tl1e conceptual framework is nliss
ing. Ail we have is a mass of descriptive tmderstanding a.i1d even more masses of
data . It is time for resea.i·cl1 councils to be brave, to grasp tl1e nettle of HPC in a
people science context, and sta.i·t pro-actively to ülitiate its usage.

Computer-based geograpllical data minü1g nlight be useful ü1 data-logged
sih1ations where we have fa.i· more data tl1a.i1 commonsense or knowledge. In
otl1er areas, tl1ere is soft knowledge tliat we need to u·y to üicorporate ü1to our
computer models. It is not a.i1 easy task. People a.i·e complex entities a.i1d need
to be modelled as such. If you wished to btùld a àynanlic mode! of 5 7 nlillion
people seeking to cover at least some of tl1eü· daily space-time experiences a.i1d
behaviour, you would probably not use a.i1y of tl1e matllematical a.t1d statistical
models of classical qua.i1titative geography or social science. Equally, existing
HPC wmùd not be fast enough or big enough: a.i1d even if tl1e computer
power existed, tl1e modelling metl1odologies do not. However, tllis does not
mea.i1 tllat tl1ey could not be created, or tl1at because of tllis or tl1at outburst
by pompons, self-righteous, computer Luddites it wmùd be a mistake even to
try. At a rime when biologists a.i·e creating new life forms, never seen before ü1
the cause of science, it would be very silly to declare tl1at we shotùd not even
u·y to formulate a.i1d solve eqtùvalent grand challenges ü1 tl1e people-modelling
arena! If social scientists fail to grasp tl1e possibilities, tl1en no doubt otl1ers
will. Maybe social scientist's do not have long to get tl1eü· research act togetl1er
before otl1er scientists in tl1e form of engineers realise tliat people matter too.
However, maybe tl1ere a.i·e also otl1er more obviously pressing issues tliat need
to be ha.i1dled.

274 Epilogue for geographers and social scientists

11.4 A GIS-HPC research agenda

If attention is switched to GIS then the situation is also problematic, but far Jess
so. GIS has a data-computer-quantitative and mapping science culture that
is alive and flourishing on a global scale. No dramatic change of paradigm is
needed here. Yet this apart, the same legacy technology problems remain to be
overmrned, and HPC has an important role to play. GIS urgently needs to
improve its exploratory geograph.ical analysis and spatial modell.ing toolkits. As
tl1eir users complete tl1eir data-capture projects and after a decade or so com
plete their institutionalisation of GIS in an enterpri.se setting, so tl1ey wi.11 want
to collect on tl1e secondary promises tlrnt GIS holds out of adding value to data
via analysis and modelling and not just from data i.ntegration. The problems are
once again tl1e Jack of a sui.table technology able to meet tl1ese generic needs in
an end-user context. If suitable technology existed, tl1e GIS developers would
probably have already packaged it, but much of what is needed does not exist,
altl1ough tl1e bare outlines of what i.s needed are fairly well lmown; see, for
example, Openshaw (1991, 1995b, 1996). Maybe it is also a matter ofwai.ting
for faster hardware to permit tl1ese metl10ds to be readily used on end-user plat
forms. However, tlus particular excuse is evaporating rapidly.

Openshaw (1998b) and Openshaw and Perree (1996) outline a view tlrnt tl1e
end-user abi.lity problem can be resolved by developi.ng a vi.sual spatial analysis
technology tlrnt is able to communicate its findings witl1 i.ts users because tl1e
results are self-evident and i.ntuitively obvions. The map (and map animation)
are wonderfol result-commu11ication tools, but tl1ey are extremely deficient if
tl1ey are used solely as data display and spatial analytical devices (tl1ei.r u·aditional
uses). If aiumation (and multi-media) communication potentials are to be prop
erly util.ised ilien it is ünportai1t tl1at tl1e results beü1g displayed ai·e meaningful
and not just pretty ai1d colourfol representations of rai1domness . HPC has a key
role to play here. You also need intelligent agents (in tl1e broadest sense) able to

explore muverses of hyper-dimensional data complexity and tl1en report ilieü·
discoveries via maps.

A subsequent issue is how tl1en would you integrate HPC-dependent tools
witl1i.n tl1e non-HPC-driven world of today's GIS? One solution is to create
stand-alone Internet-accessible tools tl1at commmucate witl1 GIS via data files
and that ai·e special-purpose virtual maclunes. They perform only one fonction
each. Theil· Internet location means tl1at tl1ey could be powered by HPC or
downloaded by registered users on to a local HPC, or run on whatever hardwai·e
tl1ey need. You no longer need to have everyiliing available in tl1e same software
package located on a smgle lump of hardware and all accessed by a sü1gle inter
face. In tl1e Internet age, fonctionality cai1 be disu"ibuted in cyberspace. Tlus
provides an obvions and easy way of using HPC in a seamless, u·anspai·ent and
almost totally invisible mairner so tlrnt virtually anyone could use it witl10ut
tears. You can read about a WWW GAM in Openshaw et al. (1999b), or u-y it
out on

http: / / www.ccg.leeds.ac.uk/ smart/ inu-o.html

A QIS- HPC researcli agenda 275

The required fonctions for tlus new world of geograplucal analysis include tl1e

followü1g:

1

2

3

4

5

6

7

Exploratory geograplucal analysis of tl1e GAM type, wluch seai-ches for
Jocalised clusterü1g in space in ai1y geograplucally referenced data.base .
Geographical explai1ation maclunes (GEMs), wluch seek to find recurrent
geographical associations tlrnt provide a 'geograplucal explai1ation' for ilie
clusteri.ng as a means of generating explanatory dues; see Openshaw et al.

(1999a).
Exploratory space-time pattern hunting. If a GAM were to be used ilie~1
computing rimes could well i.ncrease by t:wo or tlu·ee orders of magm
tude ai1d GAM-T would become a wholly HPC-dependent tool (once

agaü1).
There ai·e prototype space-time-atu-ibute smart explorers tl1at. would
broaden the pattern Jmnt to ail the data domai.ns tlrnt chai·actense GIS
(space, time, atu·i.butes of cases) or ai1y permutations of them. The basK
prÜKiples have been established (see Openshaw 1994d, 1995b), but ~111-
scale geographical data müung (GDM) applications awai.t.expen~11entauon
usü1g synt!1etic data on HPC platforms. Indeed, tl1ese ra1se ai1 unportai~t
observation. HPC may be more usefol in provi.ding a bas1s for ilie expen
mental testing of new analysis tools tl1at once perfected may be able to pe~
form ilie vast majori.ty of applications on far· Jess powerfol hai·dwai·e. Tlus
sort of HPC testing is sometllli1g iliat could be more wi.dely applied.
Spatial modellü1g is ai10tl1er major need. Once agai.n some of tl1e basic tools
exist but maybe tl1ey need to be made easier to use by users who have little
stati;tical u·ai.1lli1g. Impossible, you say. Weil why not u-y tlllilici.ng about i.t
from a computational perspective! One computational su·ategy would be as
follows: select a broad varie!:)' of alternative models, apply tl1em ail to your
data ai1d use cross-validation metl1ods to identify tl1e best one. Such a mod
ellü1g macllli1e is adaptive ai1d sli.ghtly ü1telligent. It finds tl1e 'best' from a
set of alternative models, and it could base tl1e search on hundreds or tl1ou
sands of likely cai1didates . 'Ah!' cry t!K conventionalists. 'What a waste
when ai1 expert could find a good mode! for you.' However, tlus is totally
ignores t11e fact tl1at (1) such experts ai·e rai·e compared witl1 ilie number of
potential users ai1d data sets; (2) iliere is no assurance tl1at tl1e expert wm~d
find a good, let al one tl1e best, mode! for ai·bi.u·ary data tl1at he has no. pnor
knowledge about; and (3) tl1ere could be much real confidence m ai1
appli.ed spatial data-modelling setting tl1at tl1e expert Îl1 one tech.nology
could compete witl1 a modelling maclune wi.tl1 access to several different
ones. Maybe tl1ere is a basis here for some lcind of challenge? .
Real-time analysi.s and modelling present anotl1er set of problems of genenc

importance.
Finally, protol:)rpe new model-breeding maclunes have been demonsu·ated;
see Openshaw (1988), Turton et al. (1997) , Di.plock (1996, 199~) .. Wl1y
not simply scale iliem up from prototype demonsu·ators to real applications?

276 Epilogue for geograpliers and social scientists

11.5 HPC futures in geography, etc.

The purpose in raising ail these issues in this chapter is to re-emphasise the point
that if much progress is going to be made, at least in the short term, it is essen
tial that HPC in geography, GIS and the social sciences achieves a much higher
profile . If we want new HPC-powered tools, at least initially, we will have to
develop them ourselves as no one else is likely to do it for us. This has implica
tions for recommended research u·aining programmes, as postgraduate students
are currently not being u·ained in or exposed to any HPC skills.

We have attempted to show tl1at HPC

• is applicable to geography and GIS
• offers considerable potential here and in ot11er social sciences
• and tl1e new skills needed to use it are not diffinùt to learn
• is available now.

We hope t11at by producing a 'chatty', informai text this will help to foster ail
four of t11ese objectives . At the very least it will help to demystif)r tl1e myth of
complexity. If we can do it, so should you!

Ref erences and further reading

Alexander, F.E. and Boyle, P., 1996, Methods for Ini1estigating Localised Clustering of

Disease. IARC Scientific Publications No. 135, Lyon, France .
Almasi, G.S. and Gottlieb, A., 1989, Highly Parallel Comp1.1ting. Benjamin-Cummings

Publishing Co., Redwood, Calif.
Amdahl, G .M., 196 7, 'Validity of tl1e single processor approach to achieving large scale

computing capabilities', in APPIS Conference Proceedings 30, 483-485.
Appel, A., 1985 , 'An efficient program for many-body simulations'. SIAM Journal on

Scientific and Statistical Co1nputing 6, 85-103.
Balœr, L. and Smitl1, B.J., 1996, Parai/el Pi··ograrmning. McGraw-H ill , New York.
Bell, G., 1994, 'Scalable, parallel computers: alternatives, issues and challenges'.

International Journal of Parai/el Programming 22, 3-46.
Bentley, J., 1986, Prograrnrning Pearls. Addison-Wesley, Reading, Mass.
Besag, J. and Newell, J., 1991 , 'The detection of clusters in rare diseases'. Jo1.wnal of the

Royal Statistical Socie~y, Series A 154, 143- 155.
Bezdek, J.C., 1994, 'What is computational intelligence?' in J.M. Zurada, R.J. Marks and

C.J. Robinson (eds) Computational Intelligence: Irnitating Life, IEEE. New York.

1- 12.
Birkin, M., Clarke, G., Clarke M. and Wilson, A.G., 1996, Intelligent GIS.

Geolnformation International, Cambridge.
Birkin, M., Clarke, M. and George, F .. 1995, 'The use of parallel computers to salve non

linear spatial optimisation problems '. Environ ment and Planning A 2 7 , 1049-1068.
Bomans, L., Roose, D. and Hempel, R, 1990, 'The Argonne/GMD macros in FOR

TRAN for portable parallel programming and tl1eir implementation on tl1e Intel

iPSC/2'. Parallel Cornpnting, 15 , 119-132.
Boyle, J., Butler, R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson, J. and

Stevens, R., 1987, Portable Prograrns for Parallel Processon Holt, Rinehart, &

Winston.
Braun, T., 1993, Parallel Prograinming. Prentice-Hall, New York.
Brocklehurst, E.R., 1991, Survey of Benchrnarils, NPL Report, DITC 192/91.
Brunsdon, C., Fotl1eringham, A.S. and Charlton, M.E ., 1996, 'Geographically weighted

regression : a method fo r exploring spatial nonstationarity'. Geographical Analysis 28 ,

281-298.
Catlow, C.R.A., 1992 , R esearch Requirements for H igh Pe1forinance Coinputing. Report

of tl1e Scientific Working Party. SERC, Swindon.
Chalmers, A. and Tidmus, J., 1996, Practical Parallel Processing : An l troduction to

Problem Solving in Parallel. International Thomson Computer Press, London.

278 References amd further reading

Chandy, E.M. and Taylor, S., 1992, An Introduction to Parallel P1··ogram1-ning. Jones and
Bartlett Publishers, Boston.

Coucelis, H., 1998, 'GeoComputation in context.' in Longley et al. (eds)
Geoco1nputation: A Pri1ner. Wiley, Chichester.

Demmel, J., 1996, 'CS267: Lecture 1, Jan. 1996: Introduction to Parallel Computing',
from http: /www.CS.Berkeley.EDU/- demmel/cs267 /lectureOl. html

Densham, P. J. and Armstrong, M.P. , 1998, 'Spatial analysis', in R. Healey, S. Dowers
and B. Gittings (eds) Parallel Processing Algorithms for GIS. Taylor & Francis ,
London. 387--413.

Dibble, C., 1996, 'Theory in a complex world: agent based simulation of geographical
systems'. Proceedings of GeoComputation 1 (Leeds University, September), Vol. 1,
210-213.

Diplock, G.J., 1996, The application of e11oltttionai7 co1nputing techniques to spatial inter
action modelling (unpublished PhD tl1esis, University of Leeds).

Diplock, G.J., 1998, 'Building new spatial interaction models by using genetic program
ming and a supercomputer'. Environment and Planning A 30, 1893- 1904.

Diplock, G.J. and Openshaw, S., 1996, 'Using simple genetic algoritl1111s to calibrate
spatial interaction models'. Geographical Ana~11sis 28, 262-279 .

Dongarra, J.J., 1995, Performance ofvarious computers using standard linear equations
software, CS-89-85, Computer Science Department, University of Tennessee,
Knm.·ville, TN 37996-1301.

Dowd, K., 1993, High Pe1fonnance Co1nputing. O'Reilly and Associates, Sebastopol, Cal.if.
Efron, B. and Gong, G., 1983, 'A leisurely look at tl1e bootstrap, t11e jack-lŒife, and

cross-validation' . American Statistician 37, 36--48.
Ein-Dor, P., 1985. 'Grosch's Law revisited'. Comnwnications of the ACM28, 142-151.
EPSRC 1995, A Re11iew of Supercoinp11ting 1994. EPSRC, Swindon.
Flynn, M.J., 1972, 'Sorne computer organisations and t11eir effectiveness'. IEEE Trans

Co1nputers 21, 948-960.
Foster, I., 1995, Designing and Building Parallel Progra1ns. Addison-Wesley, New York.
Fotl1eringham, A.S., Charlton, M.E. and Brunsdon, C., 1997, 'Two techniques for

exploring nonstationarity in geographical data'. Geographical Syste1ns4, 59-82.
Fox, G., 1988, SolFing Proble1ns on Concu.rrent Processors: General Techniques and Regitlar

Problems. Prentice-Hall, Englewood Cliffs, N.J.
George, F., 1993 , 'Spatial interaction modelling on parallel computers'. EPCC-PAR

GMAP Report, EPCC, Edinburgh University.
Getis, A. and Ord, J.K., 1992, 'The analysis of spatial association by use of distance statis

tics'. Geographical Analysis 24, 189- 206.
Gilbert, G.N. and Doran, J., 1994, Sinwlating Societies: the Comp11ter Simulation of Social

Phenomena. UCL Press, London.
Gilbert, N. and Conte, R. (eds) 1995 Artificial Societies. UCL Press, London.
Gropp, W., Lusk, A., and Skjellum, A., 1994, USING MPI: Portable Parallel

Progra1n1ning with the Message-Passing Intaface. MIT Press, Cambridge, Mass.
Gustafson, D., Rover, D., Elbert, S., and Carter, M. , 1991, 'The design of a scaleable,

fixed-time computer benchmark'. journal of Parallel and Distributcd CompHting 12,
388--401.

Harris, B., 1985 , 'Sorne notes on parallel computing with special reference to transporta
tion and land use modelling'. Eni1ironment and Planning A 17, 1275-1278.

Healey, R., Dowers, S., Gittings, B. and Mineter, M. (eds) 1998, Parallcl Proccssing
Algorithms for GIS. Taylor & Francis, London.

References amd furt her reading 279

Hey, A.J.G., 1991 , 'The GENESIS Distributed Memory Benchmarks'. Parallel

Compttting 17, 1275- 1283.
Hillis, W.D., 1992, 'What is massively parallel computing and why is it important?' in

N. Meu·opolis and G.C. Rota (eds) A New Bra in CompHtation. MIT Press,

Cambridge, Mass. 1-15.
Hockney, R.W. and Jesshope, C.R., 1981, Parallel Comp1.1ters. Adam Hilger, New York.
Hockney, R.W. and Jesshope, C.R., 1988 , Parallel Co1nputcrs 2: ArchitectHre,

P1·ograin1ning and Algorith1ns. Institute of Physics Publishing, Bristol and Philadelphia.
Hwang, K., 1993, Ad11anced Co1nputcr Architecture: Parallelis1n, Scalability, Progra1n

mability. McGraw-Hill.
Hwang, K. and Briggs, F.A., 1984, Compute1" Architect1.1re and Parallel Processing.

McGraw-Hill, New York.
K.ernighan, B. and Plauger, P.J., 1974, The Ele1nents of Progra1mning Style. McGraw-

Hill, New York.
K.ober, R., 1988, Parallelrechncr-Architelituren. Springer-Verlag, Berlin.
K.ogge, KM., 1981, 'Die Architect1t1"e of Pipelined Cmnputers. McGraw-Hill, New York.
K.oza, J.R., 1992, Genetie Programming. MIT Press, Cambridge, Mass.
K.oza, J.R., 1994, Genetie Progra1mning II: Atttomatic Disco11ery of Re-usable Programs.

MIT Press, Can1bridge, Mass.
Landau, R.H. and Fink, P.J., 1993, A Scientist's and Engineer's Guide to Worl1stations and

Superco1nputers. Wiley, New York.
Lewis, T.G. and El-Rewini, H . 1992, Introduction to Parallel Computing. Prentice-Hall,

New Jersey.
Longley, P.A., Brooks, S.M., Mcdonnell, R. and Macmillan, B. (eds) 1998,

Geocomputation: A Primer. Wiley, Chichester.
Martin, D., 1998, 'Optimizing census geography: the separation of collection and output

geographies. International journal ofGeographical Infor1nation Science 12 (in press).
Morse, H.S., 1995 , Practical Parallel Co1np1.1ting. AP Professional, Boston.
MPI specification, version 1.1, 1995, ftp://ftp.mcs.anl.gov/pub/mpi/mpi-l.jun95/mpi

report.ps
O'Hare, G.M.P. and Jennings, N.R., 1996, Foundations of Distributed Artificial

Intelligence. Wiley, New York.
Openshaw, S., 1976, 'A geographical solution to scale and aggregation problems in

region building, partitioning and spatial modelling'. Transactions of the Instit1.1te of

British Geographcrs, New Series 2, 459--472.
Openshaw, S., 1978, 'An empirical study of some zone design criteria'. Environment and

Planning A 10, 781-794.
Openshaw, S., 1984, 'Ecological fallacies and t11e analysis of areal census data'.

EnJJironment and Planning A 16, 17-31.
Openshaw, S., 1987, 'Sorne applications ofsupercomputers in urban and regional analysis

and modelling'. EnJJiromnent and Planning A 19, 853-860.
Openshaw, S., 1988, 'Building an automated modelling system to explore a universe of

spatial interaction models'. Geographical Analysis 20, 31--46.
Openshaw, S., 1990, 'Automating the search for cancer clusters: a review of problems,

progress and oppornmities', in R.W. Thomas (ed) Spatial Epide1niology. Pion, London.

48-78.
Openshaw, S., 1991 , 'A new approach to t11e detection and validation of cancer clusters:

a review of opportunities, progress and problems', in F. Dunstan and J. Pickles (eds)
Statistics in Medicine. Clarendon Press, Oxford. 49-64.

280 References and further reading

Openshaw, S., 1994a, 'Computational human geography: towards a research agenda'.
En11iron1nent and Planning A 26, 499-505.

Openshaw, S., 1994b, 'Computational human geography: exploring the Geocyberspace'.
Leeds Re11iew 37, 201-220.

Openshaw, S., 1994c, 'Neuroclassification of spatial data', in B. Hewitson and R. Crane
(eds) Neural Nets: Applications in Geography. Kluwer Academic, Dordrecht. 53-70.

Openshaw, S., 1994d, 'Two exploratory space-time-attribute pattern analysers relevant to
GIS', in S. Fotheringham and P. Rogerson (eds), Spatial Analysis and GIS, Taylor &
Francis, London. 83-104.

Openshavv, S., 1994e, 'A concepts rich approach to spatial analysis, theory generation and
scientific discovery in GIS using massively parallel computing', in M. Worboys (ed.)
InnoPations in GIS. Taylor & Francis, London . 123-138.

Openshaw, S., 1995a, 'Human systems modelling as a new grand challenge area in
science'. Enviromnent and Planning A 27, 159- 164.

Openshaw, S., 1995b, 'Developing automated and smart spatial pattern exploration tools
for GIS applications'. The Statistician 44, 3- 16.

Openshaw, S., 1996, 'Developing GIS relevant zone based spatial analysis methods', in lYI.
Batty and P Langley (eds) Spatial Analysis: Modelling in a GIS Environ ment.
Geoinformation International, Cambridge. p 55-73.

Openshaw, S., 1998a, 'Neural network, genetic and fuzzy logic models of spatial inter
action'. Environinent and Planning A 30, 1857-1872.

Openshaw, S., 1998b, 'Building automated geographical, analysis and explanation
machines' , in Longley et al. (eds) Geocomputation: A Priiner. Wiley, Chichester.
95-116.

Openshaw, S., 1998c, 'Towa.rds a more computationally minded scientific human geogra
phy'. Environinent and Planning A 30, 317-332.

Openshaw, S. and Abral1art, R.J . (eds) 1999, GeoCompution. Taylor & Francis, London .
Openshaw, S. and Alvanides, S., 1999, Applying GeoComputation to the analysis of spa

tial distributions, in P. Longley, M.F. Goodchild, D.J. Maguire, D.W. Rhind (eds) GIS:
Princip/es, Techniques, Management and Applications. Wiley, New York.

Openshaw, S., Blalce, M. and Wymer, C., 1995, 'Using neurocomputing methods to clas
sify Britain's residential areas', in P Fisher (ed.) Innovations in GIS2. Taylor and
Francis, London. p 97- 112.

Openshaw, S., Charlton, M. , Craft A. and Birch, J.M., 1988, 'An investigation of
leukaemia clusters by use of a geographical analysis machine'. The Lancet Feb 6,
272-273 .

Openshaw, S., Charlton, M., Wymer, C. and Craft, A. 1987, 'A mark 1 geographical
analysis machine for the automated analysis of point data sets'. International Journal of
GIS 1, 335-358.

Openshaw, S. and Craft, A., 1991, 'Using the geographical analysis machine to search for
evidence of clusters and clustering in childhood leukaemia and non-Hodgkin lymphomas
in Bri tain' , in G. Draper (ed.) The Geographical Epide1niology of Childhood Leulœmia and
Non-Hodgllin Lymphornasin Great Britain, 1966-83. HMSO, London. 109-122.

Openshaw, S., Cross, A. and Charlton, M., 1990, 'Building a prototype geographical cor
re lates exploration machine'. International]ott1'nal of GIS 3, 297-312.

Openshaw, S. and Openshaw, C.A., 1997, Artificial Intelligence in Geography. Wiley,
London.

Openshaw, S. and Perree, T., 1996, 'User centered intelligent spatial analysis of point
data', in D. Parker (ed.) Innovations in GIS 3. Taylor & Francis, London. 119-134.

References and furtlier reading 281

Openshaw, S. and Rao, L., 1995 , 'Algorithms for re-engineering 1991 census geography',
Enviromnent and Planning A 27, 425-446 .

Openshaw, S. and Schmidt, J., 1996, 'Parallel simulated annealing and genetic algorithms
for re-engineering zoning systems', Geographical Systems 3, 201- 220.

Openshaw, S. and Schmidt, J., 1997, 'A social science benchmark (SSB/l) Code for
se rial, vector, and parallel supercomputers'. International Joitrnal of Geographical and
Environrnental Modelling 1, 65- 82.

Openshaw, S. and Sumner, R., 1995, 'Parallel spatial interaction modelling on the
KSRl-64 supercomputer'. Worki.ng Paper 95/15, School of Geography, University of
Leeds .

Openshaw, S. and Turton, I., 1996, 'A parallel Kohonen algorithm for the classification of
large spatial datasets'. Computers and Geosciences 22, 1019- 1026.

Openshaw, S., Turton, I. and Macgill, J., 1999a, 'Using the geographical analysis machine
to analyse census long term limiting illness data' , Geographical and Environrnental
Modelling 3., 83-99 .

Openshaw, S., Turton, I., Macgill, J. and Davy, J., 1999b, 'Putting the geographical
analysis machine on the Internet'. Innoimtions in GIS 7. Taylor & Francis, London.

Openshaw, S., Wilkie, D., Binks, K., Wakefield, R., Gerrard, H .H. and Crosdale, M.R.,
1989, 'A method of detecting spatial clustering of disease', in W.A. Crosbie and J.H.
Gitn1s (eds) Medical Response to the Effects of Ionising Radiation. Elsevier, Amsterdam.

Pachero, P. S., 1997, Parallel Progra1n1ning with lYIPI. Morgan Kaufmann Publishers, San
Francisco.

Pitas, I., 1993, Parallel Algoritlnns: For Digital Image Processing, Co1nputer Vision and
Neural Networlis. Wiley, Chichester.

Sawyer, M., 1998, 'Software environments and standardisation initiatives', in R. Healey,
S. Dowers and B. Gittings (eds) Parallel Processing Algorithms for GIS. Taylor &
Francis, London. 33-57.

Small, D.R. and Edelstein, B.A., 1997, 'Scaleable Data Mining'. Available from Two
Crows Corp. on the WWW.

SPEChpc96 Results http: / /www.specbench.org/hpg/results.html.
Treleaven, P., Brownbridge, D.R. and Hopkins, R.P., 1982, 'Data d.riven and demand d.ri

ven computer architecture'. ACM Co1nputing Siwveys 14, 95-143.
Trewin, S.M., 1998, 'High-level support for parallel programming', in R. Healey, S.

Dowers and B. Gittings (eds) Parallel Processing Algorithrns for GIS. Taylor & Francis,
London. 59-86.

Turton, I. , 1997, 'Application of Pattern Recognition to Concept Discovery in
Geography, Unpublished MSc dissertation, Human Geography, School of Geography,
University of Leeds, Leeds, LS2 9JT.

Turton, I. and Openshaw, S., 1996, 'Modelling and optimising flows using parallel spatial
interaction models', in L. Bouge, P. Fraigniaud, A. Mignotte., Y. Roberts (eds.) Euro
Par' 96 Parallel Processing Vol. 2, Lecture Notes in Computer Science 1124. Springer,
Berlin . p 270-275.

Turton, I. and Openshaw, S. 1997, 'Parallel spatial interaction models'. Geographical and
En11ironmental Models 1, 179-197.

Tu.rton, I. and Openshaw, S., 1998, 'High performance computing and geography: devel
opments, issues, and case studies'. En11ironment and Planning A 30, 1839- 1856.

Turton, 1., Openshaw, S. and Diplock, G.J. 1996, 'Sorne geographical applications of
genetic programming on the Cray T3D supercomputer', in C. Jesshope and A.
Shafarenko (eds) UK Parallel '96. Springer, Berlin. 135-150.

282 References and further reading

Turton'. I., Openshaw, S. and Diplock, G.J., 1997, 'A genetic programming approach to
building new spatial models relevant to GIS', in Z. Kemp (ed .) Inno11ations in GIS 4.
Taylor & Francis, London. 89-102.

Valiant, L.G., 1990, A bridging mode! for parallel computation. Co1nmun. ACM 33
103-111 ' '

Wilson, A.G., 1970, Entropy in Urban and Regional Modelling. Pion, London.
Wilson, A.G., 1974, Urban and Regional Models in Gcography and Planning. Wiley,

London.
Wilson, A.G., 1981, Geography and the Eni,ironment, System Analytical Methods. Wiley,

London.
Wilson, A.G., Coefüo, J.D., MacGill, S.M. and Williams, H.C.W.L., 1981, Optimisation

tn Location and Transport Analysis. Wiley, Chichester.
Wilson, G.W., 1995, Practical Parallcl Progra1n1ning . MIT Press, Cambridge, Mass.
Xiong, D. and Marble, D.F., 1996, 'Suategies for real-time spatial analysis using massively

parallel SIMD computers : an application to urban uaffic flow analysis'. International
Journal of GIS 10, 769-789 .

Index

AI (artificial intelligence) 10, 12, 17-18,
25,28, 273

Alexander and Boyle 105
'algorithmic complacency' concept 236
algorithms: applications and HPC 14, 17,

25- 6; data parallel processing 151-2;
debugging 246-7, 250; GAM 211-13,
215, 219; GIS applications 43-5; HPC
48, 55; message-passing 178-82,
186-7, 189-90, 192-3, 195,202-3;
multi-tasking 141, 144, 146; parallel
programming 74-5, 87-8, 92, 147-50;
performance optimisation 235-40, 242;
rethink.ing for HPC 60, 62-5, 68,
72-3; spatial data 39; vectorisation 97,
100-4, 106-7, 113, 116-20, 122

Almasi and Gottlieb 47, 48, 49, 83 , 86
Amdal1.l 64-5, 66, 67
Amdal1l's law 64, 66-8, 71, 87, 99-100,

192,216,238,240,265
analysis machine concept 105
analytic applications 27-9
Appel 101, 102
applications : benchmarking 252, 254- 6;

geography and HPC 1-3, 7-10;
HPC 12-46, 47, 52-4, 60 , 265;
performance optimisation 235, 238;
results 247

architectures, computer 15, 76-82, 90
array processors 82-3, 8 5
ASCI (Accelerated Suategic Computing

Initiative) 14, 53, 72, 81
assembly programming 178
asynchronous messages 241, 243, 249
automated modelling systems 35
automatic parallelisation software 74- 6
automation 16
awareness ofHPC 19-26

Baker and Smith 6, 49, 88, 148
Batty 29
Bell 60
benchmarking 22-3, 118, 144, 200, 238,

251-66
Bentley 101, 102
Besag and Newell 105
Bezdek 17
'big brotl1er' concept 272
Birkin et al. 30, 34, 102, 103, 119
block dimibution 154- 5
Bomans et al. 183
bootst1·ap 42
Boyle et al. 18 3
branching loops 98
Brunsdon et al. 33
bugs 61, 87, 108, 140, 144-5 , 188, 191,

202-3,218
bulk synchronous parallel (BSP) 251, 259

caches 55, 96, 111, 236, 239, 243, 255
Catlow 19
CDC6600 94
census data 39
Chalmers and Tidmus 49, 87
Chandy and Taylor 49
clùps6, 13-14,42,55-7, 81 , 86
circle 217-22
Clarke et al. 27
classical applications 2 7
climatic change 269, 271-3
clustering 39-40, 104-6, 212-13, 275
code: applications and HPC 17;

benchmarking 255; debugging 246-50;
HPC 50, 55, 60-2, 68, 73; longevity
236; message-passing 178-9, 186-95;
m1ilti-tasking 142-7; parallel
programming 74-5 , 147-8, 151-5;
performance 235- 8, 242; vectorisation

284 Index

95-104, 107- 14, 116-18, 120, 122; see
also Fortran; MPI

Cold War and development ofHPC 53
communication, processor: benchmarkings

and 258-59, 264-5; message-passing
180-1, 192, 195, 199; optimisation
and 239, 241; parallel programming 78,
80,86-7,89-90, 150

compilers: debugging 244-6; HPC 14,
19, 56, 61, 64, 257; multi-tasking
141-7; parallel programming 4, 6,
74- 5, 81, 86, 90, 151--4; performance
optimisation 237-8; spatial interaction
mode! 199; vectorisation 96- 9 101
109, 113) '

complexity 20-1, 26
compression, data 237
computation: applications and 3-5, 9-10,

12, 14- 22,24-8,30, 32,34-5,41 ,
43--4, 254, 256; benchmarking 258,
264- 5; culnire 8-10; GAM 215-16
218-20, 222--4; HPC and 50, 52 , 5'5 ,
271-2, 275; message-passing 180- 1,
195 ; multi-tasking 143, 147; parallel
programming 83, 87, 90, 152-3;
performance optimisation 239--40,
242-3 , 250; vectorisation 95 97-100
104- 5, 110- 16, 118, 120, ll2)

concurrency 51 , 62-3
conditional statements 98
consistency, results 245 , 247
contention 241
contrai: decomposition 148; user 50, 77
convergence criterion 258
convoy principle 150
cosœ4, 15, 35, 39,45,47, 50, 52, 55- 7,

60, 71-3
Couchelis 9
Cray J90 23, 50, 54, 57, 82, 100,

109-11 , 116, 118 , 122, 145-7, 201,
212,236

Cray, Seymour 94
Cray T3D 19, 22-3, 30-1 34-6 39 54

60-1, 73, 103, 194,20l,213: 218 , '
236,255,258,260,263

Cray T3E 50, 54, 60 , 73
Cray Y-MP 105
crime and use ofHPC 271
culnire, computational 8- 10
cyclic data distribution 154-5

DAI (distributed AI) 28- 9
data-dependencies 64, 110 143 150

153, 246 ' ')

data-mining 19, 24, 35, 41, 45, 53,
104-5,252,273,275

databases 3, 10, 24-5 , 29 , 39--40, 43,
45-6, 53

deacllock 249
debugging 109, 143--4, 152, 181-2, 188;

hints for 243-50
decomposition 15, 44, 89, 148- 50, 180,

188, 197-200,220
defensive coding 192, 247
Demmel 58- 9, 81, 90, 235
Densham and Armstrong 44
detection, bug 245
Dibble 18
Diplock 31 , 35, 275
distributed memory 79-82 86- 9 92-3

149, 154-5, 178, 180-2: 188- 9, '
196-8,248,252

distribution, data: benchmarking 256-8;
decomposition 148--49; GAM and MPI
220--4; message-passing 180- 1, 190-3,
196-202; multi-tasking 141-3, 145;
parallel programming 154- 5;
performance optimisation 239, 241,
249

DO loops: debugging 246; GAM 211- 19,
222, 224-5; HPC and 257; message
passing 190-3; parallel programming
83-5, 147, 151 , 153; reorganisation
and performance 236, 238; shared
140- 9; vectorisation 95, 97-9, 106-16,
118, 120, 122

Dongarra 252
doubly constrained spatial interaction

mode! 30, 254-5, 258-60, 262, 264-5,
267

Dowd 77, 99, 108, 148, 149

efficiency: algorithms 239; benchmarking
258; GAM 211-13, 216, 218- 20, 237;
HPC 57, 64-71; MPI 184; mu.lti
tasking 141-3, 145; parallel
programming 148, 154; parallel
processing hardware 86-7, 92;
processors 240; spatial interaction
mode! 253

Efron and Gong 42
Ein-Dor 71
embarrassingly parallel 141, 153, 213 ,

224
enablement, HPC as technological 272
end-user ability 274
ENIAC 71
errors: benchmarking 258-9; GAM and

MPI 222; HPC fumre 268, 271;
message-passing 182, 190- 1, 193--4,
200 , 202; multi-tasking 145; parallel
243-7, 249-50; vectorisation 95, 117,
122

et.hies 270
experimentation 12, 18, 20, 24, 52, 54,

256
expressivity and message-passing 182

flexibility 87, 92, 141 , 178, 182, 188 ,
201,211,214-15,222,240,251

floating-point operations 14, 22, 51-2,
56-8, 83,85,95,97, 103 , 110, 116;
non- 255-6

flow data 30-1, 252 , 255 , 257
Flynn 76
Fly1rn 's classification of architecmres 7 6-9,

91-2
Fortran: applications 26; GAM 212,

221-2, 226-34; HPC 58, 67;
message-passing 184-7, 189- 91, 204;
multi-tasking 143--4; parallel
programming 6, 151-2, 154-5;
performance optimisation 245-6, 248;
spatial interaction mode! version 138-9;
vectorisation 83--4 , 95-7, 106- 7

Poster 150
Fotheringham et al. 18, 26, 33
Fox 69
Fujitsu VPX240 23, 35, 54
functional decomposition 150
functionality and MPI 184
future ofHPC 5-7
future-proofing 82 , 178 , 182, 251

GAM: development 21, 40; geographical
analysis 275; MPI and 211- 26; MPI
example 226-34; multi-tasking 146- 7;
multi-tasking (version 1) 156-68,
69-74; parallel programming 153;
performance optimisation 236-7, 241;
vectorisation 104- 19; vectorisation
(version 1) 122- 8; vectorisation
(version 8) 128-36

Geist 6
genetic programming (GP) 35, 240, 250
geo-targeting 29
geocomputation 9-10, 17-19, 24, 42, 53,

69,240,252,272-3
geographical correlates exploration

machine (GCEM) 40
geographical explanation machine (GEM)

275

Index 285

geographical lmowledge systems 41
geography: application examples 29--42;

applications and HPC 12, 14, 16- 22,
24- 9 , 45; applications and results 247;
benchmarking 252 , 254, 265- 6; code
110, 140; decomposition 149; GAM
105; HPC and 1- 10, 47-8, 52, 54, 59,
62, 68 , 73, 268-70, 272-6; parallel
programming 75; performance 104;
research 252, 255- 6

geometric decomposition 149- 50
George 34
Getis and Ord g-statistic 44
gigaflops 22 , 57-8
Gilbert and Conte 29
GIS (geographical information systems):

applications and HPC 12, 14, 17- 18,
21-2,25-9,31, 34-7,40-5,99;
applications and resu.lts 247;
benchmarking 255-6, 258;
decomposition 149; HPC and 1-5 , 7,
10, 52,62,269,274-6

global challenge 268-76
global memory 79 , 81, 85, 189- 90,

196-7
government and development of HPC

271
grand challenges 19-20, 51 , 54- 5, 61 ,

273
granularit:y 43--4, 58 , 179, 239; coarse

26-7,51,81, 85-6,89-90, 139, 141 ,
150, 213; fine 39, 78, 88-90, 95, 122,
139--40, 147, 150, 195 , 201 , 213 , 215 ,
255

Gropp et al. 180, 181-2, 184, 188
Grosch's law 71-2
Gustafson et al. 68

hardware: applications and HPC 3--4,
9- 10, 35-6, 42-5 ; benchmarking
251- 2, 255,259-60; bugs246, 248;
HPC 13- 16, 19-26, 28, 50- 1, 55, 61 ,
71-3, 265-6; message-passing 182--4;
NUMA 155; obsolescence 236-7;
parallel programming 52-3, 74-93,
140-1; vectorisation 94-7, 100-1 ,
117

Harris 30
Healey et al. 7, 13, 30, 42-3, 44, 45 , 60
Henry, David 259
Hey 252
High-Performance Computing Initiative

61
highly Parallel computing 87

286 Index

Highly Paralie[/high-performance
Fortran (HPF) 19, 61, 151-6, 178- 9,
182-3, 189, 196-7,212,251,256- 8,
261-6

Hillis 12, 51
history of parallel computing 71-2
Hockney and Jesshope 84, 88
hot spots 68, llO, 143, 238
HPC Initiative 29-30
HPC-dependent methodologies 28
HPP (highly parallel processor) 15, 41,

51-2, 57,58, 71,81
human geography 12, 21, 268-70
human systems modelling 20, 28-9, 53, 273
Hwang and Briggs 47-8, 49

idle processors 71, 78, 89, 91-2 148 192
196,213- 14,216-20,223--4:241:257

ILLIAC 59, 72
importance of parallel computing 3-5,

52-7
inevitability ofHPC 55
interdisciplinary applications 26, 28
Internet 3, 274
invisible parallelism 77
IT (information technology) 1, 4-5,

28-30, 35,45
iterative decomposition 150

Kernighan and Plauger 101
Kciber 89
Kogge 84
Koza 35
Krishnamurthy 49

Landau and Fink 99, 108, 144, 147, 179
language: computer 151--4; parallelism 25
legacy rnodelling applications 27
levels of parallelism 88- 90
Lewis and El-Rewini 6, 71
libraries 61, 90, 98- 9, 108, lll , l18,

122, 156, 181, 183--4, 187, 256
linear scaleability 65, 182, 216, 225, 238,

264-5
load balancing 92, 143--4, 148-50, 196,

216,219
local memory 197-8 200 202
location optimisation' 34-S, 235, 242
logic 97, 143--4, 146, 182, 190- 3,

199-202,244,246-8,250
longevity: of code 183; of machines 61
Langley et al. 9, 17, 272

mainframe computers 2, 13 16 65 71-2
77, 82, 85, 100, 105, 219 ' ' '

Martin 37
master/slave processors 150 188-9 192

201-2,220- 3,225,241,l43,249, '
258-9

megaflops 52, 57, 94, llO, l12, l16-17,
122

memory: applications and HPC 9, 15, 17,
19, 22--4; benchmarking 252-8, 260,
264; global 79, 81, 85 , 189- 90, 196-7;
hardware classification 79-80; HPC
58-9, 68; local 215-16, 224, 236, 238,
242-3; message-passing 180-2, 186,
192-3; parallel programming 48, 50-1,
55- 7, 152, 155; spatial interaction
mode! 196- 8, 200, 202; vectorisation
96,98, 107, 109-1 1, 113, 115, 118,
122

message-passing: applications and HPC
19, 25; benchmarking 260; debugging
244-8; GAM 214-19, 222- 6; MPI
258- 9; parallel programming 150,
155-6, 178-204; parallel-processing
hardware 80, 86-7, 90, 92;
performance optimisation 235, 241-2

methodology, HPC development 268- 71,
273--4

MIMD (multiple instruction multiple
data) 78-9, 81-2, 85, 100, 122, 155,
2ll ; -DM 86-8, 92- 3, 178, 180, 188;
-SM 85-7, 92, 140-7

minicomputers 72, 85
MISD (multiple instruction single data)

78,92
modelling 18, 20-1 24-5 27- 9 31- 3

35- 6,69, 152,2s2,25s,271'.273'
Monte Carlo simulations 18 40 l17

141, 152, 213 ' ' '
Morse 49, 55, 57, 60, 70, 73, 79, 240,

243
MPI (message-passing interface):

benchmarking 251; comparison with
HPF 257, 261-6; debugging 243, 249;
development ofHPC 61 ; HPC and 19,
25; message-passing 182--4, 186-92;
parallelism and GAM 211-26;
performance optimisation 235, 239--42;
spatial interaction mode! 196-204,
207-ll

MPP (massively parallel processor) 13, 15,
23,40, 51, 57-62,65,67- 8, 71- 3, 81,
259

multi-processing 15
mu.lti -tasking 15 , 51, 90, 139--48, 151,

153, 2ll

networks, interconnecting 6- 7, 15, 48,
80,87,89-90,92, 154, 241

non-distributed memory 153, 180, 192,
215,222

NUMA (non-uniform memory access) 81,
155

number-crunching 9-10, 24, 35, 43, 51,
53,252,255-6

numbering processors 185- 8, 190, 192

obsolescence, hardware 56, 76-7, 236-7
O'Hare and Jenning 16, 28
Openshaw and Abrahart 9, 17, 272
Openshaw and Alvanides 39
Openshaw and Craft 40, 105
Openshaw and Openshaw 12, 150
Openshaw and Perree 40, 274
Openshaw and Rao 37
Openshaw and Schmidt 22, 37, 50 , 64,

251,260,261,262,263,264
Openshaw and Sumner 30
optimisation, performance 61- 2, 71 , 77,

81,84-6,89-92,95-7, 100--4,
107- 17, 120- 1, 141 , 151,223,
235--43 , 235-50

origin-constrained spatial interaction
mode! 119-22, 147, 196, 253- 5

owner computes rule 256- 7

Pacheco 181
parallel computing, concept of 47-52
parallel programming 151- 5;

applications and HPC 25 , 28 ; concept
of 13, 15- 17; debugging 243-7,
249-50; future of 5-7; GAM and MPI
211-26; hardware 74-93; HPC and
9-10; importance of 3-5; message
passing 178-204; performance
optimisation 235-6; strategies 147- 51

parameter estimation models 31-3
parameter landscapes 33--4
PCs: applications and HPC 13-17, 21--4,

35, 44; benchmarking 251 , 255,
259-60; development of HPC and 1--4,
6-9; message-passing 182-3, 185, 219;
parallel programming 48, 50, 71, 73,
77; spatial interaction mode! 196;
vectorisation 99-1 OO

performance: Amdahl's law 64-5;
applications and HPC 15, 42- 3;
benchmarking 256; GAM 211-12,
215- 16, 219, 224--5; hardware and
HPC applications 22-3, 25; HPC 2,
47, 50-1 , 55-7; HPF 257; MPI and

Index 287

serial code 259-66; multi-tasking 141-2,
146-7; optimisation 61-2, 71, 77, 81,
84--6,89- 92,95-7, 100--4, 107- 17,
120-1, 141 , 151, 223, 235-50; parallel
programmi11g 90, 150, 153-5; spatial
interaction mode! 196-7, 199-201;
vectorisation 94, 98-104, 110, 112,
117-18 , 122

pi11g pong program 186-8, 204
pipelini11g 77, 83--4, 94, 99, 235, 238-9
pollution impacts 269
population forecasts 42
portability of code: applications 6, 9, 17,

19, 26-7; benclmrnrking 255, 258;
HPC 61-2; message-passing 182--4;
MPI 212, 223, 251; parallel
progranuni11g 90, 148, 151, 155 , 178;
performance 236-7; vectorisation 100,
103, 108, 109

postal mail message compared to
message-passing 180

potential ofHPC 2-3, 10
power, computer 3, 8, 13, 15, 17, 19, 24,

48,50,52--4, 57,62,268
problem size: Amdahl's law 100;

applications 9, 12, 15, 24-5, 36-7;
benchmarking 253, 256, 258, 260-5;
bugs 244; efficiency 240; GAM 117;
hardware 87; HPC 47-50, 52, 54--5;
MPI 201; MPP 67-8; performance 23

problems: HPC and solving 19-21;
i111portance of 7 6

processors: benchmarking 256-65;
computer classification 80-1, 83-5;
debugging 243-5, 247-9; GAM and
212-23, 225, 236; HPC and 13,
15-16, 19,47-9, 56-60,64- 8, 72-3;
message-passing 178-81, 183, 185-96;
multi-tasking 140-2, 144-5, 147; .
parallel progran1111i11g 6- 7, 148-50,
152-5; parallel-processi11g hardware 75,
77- 80, 82-92; performance
optimisation 242-3; scaleability
238--40; spatial Î11teraction mode!
196-203; vector supercomputers 94-6

profiling 242
programmi11g: models 90-1; multi-taskil1g

141; technology 14; sec also parallel
programming

PVM (parallel virtual machine) 183

quantum computers 13, 59
quest for speed 4, 55, 216-17, 219, 235
quit signais 222, 249

288 Index

real-time 16, 24, 42, 239, 275
receiving messages 180, 186-8 192 202

241, 243, 248-9 ' ' '
recursion, baclcward 98
recursive decomposition 150
reduction operations 152
registers 96, 98
relevance of HPC 1
reliability 56, 71
replication 27, 45, 64, 75, 179
research: HPC and 2-3 14 17-18 20-2

28, 35, 52, 60, 235, 252'. 269, 2'71; '
importance of 39, 53, 100- 1, 179-80,
183

results: accuracy 95 144 191 194
199-200,202-3:224:235:247~8,250;
bugs 244-5; GAM 212, 217; quality 24,
239; speed 16; validation 61, 105, 110,
116, 194,238,247,250,256

Sawyer 89
scaleabilit:y: applications and HPC 15, 17,

27, 31, 36, 43; benchmarlcing 252,
256; BSP 259; GAM 216, 219, 236-7;
HPC 4, 9, 57, 65, 69, 73; linear 65,
182, 216, 225, 238, 264-5; message
passing 178-9, 195; multi-taslcing 141;
parallel programming 147, 149;
parallel-processing hardware 80, 85, 87,
89; performance optimisation 238-40

scatter-gather operations 98
science, quality of 3, 16, 20, 30, 100-1 ,

103 , 122, 179,213-14,219,224,
237-40,247,255

searches 25, 27, 36- 7, 40-1, 43, 104-7,
115, 149- 50,219-20,270-1

sending messages 180-1 186-8 192
202,241,243,249 ' ' '

sequentialism 73, 77, 81, 84-5, 91
serial code: applications and HPC 34;

debugging 243-4; GIS applications 43;
HPC and 14-16, 61 , 64; HPF and
257-8; message-passing 179, 184-6,
188-9, 191, 203; MPI and 212; multi
tasking 142-3, 148; parallel
programming 140, 148, 154; parallel
processing hardware 74-5 81 85-7
91; performance 259-66; ~rect~r '
supercomputers 101

serial computing 48, 55, 236
SGI Onyx 23
shared data programming 180, 196
shared Do loops 90, 139-48, 155, 179,

188,201, 214- 15

shared memory 79-82 85- 7 92 97
142, 145-7, 154-5 ,'182,215,'24s

SIMD (single instruction multiple data)
77- 9,81-3,85,87,91, 151 ,155,178

sinrnlated airnealing algoritlu11S 37
sinmlations 18, 27, 69
singly-constrained spatial interaction

n1odel 30-2,258, 260-1,263-4,266
SISD (single instruction single data) 77,

80,91
size: of code ai1d optimisation 237; of data

252, 256; of message 248
skills, computer 3-6, 9, 19, 21-2, 25, 43,

55
Small and Edelstein 45
SMP (symmet:ric multi-processors) 15, 81
social sciences: applications ai1d HPC 14,

16-21, 25, 29, 45; benclrnrnrlcing 265;
code 140; HPC at1d 1, 5-9, 52, 54, 62,
268, 270, 272-3, 276; reseai·ch 252,
254-5

source code, benchmai·lcing 251
space-time patterns 275
spai·sity 256-7
spatial ai1alysis 5, 239; intelligent

exploratory 40-1
spatial classification methods 39-40
spatial data 17-19, 27- 8, 68; classification

39; patterning 41; reporting 36-9
spatial interaction mode!: benclrn1ai·king

22, 251-8; final version 138-9;
geographic application 30-6; HPF
176- 7; message-passing 207-11 ,
241-2; MPI 196-203; multi-tasking
176; origin const:rained 119-22; parallel
prograinming 153-5, 256- 7; speed
102-3; storing research 137-8; task
farming 220

spatial modelling 274-5
spatial optimisation 18, 34-5
spatial systems mode! 149-50
speculative decomposition 150
speed: applications ai1d HPC 3- 5, 9,

13-21,22-4,27, 31, 34- 6, 42,44;
benclrn1arlcing 252; bugs 245; HPC
48-56, 58,64-70, 72,268;HPF/MPI
260, 264, 266; message-passing 179,
181, 195; MPI 201; multi-tasking
141-2, 144, 146-7; parallel
programming 149, 153, 155; parallel
processing hai·dware 75, 83- 5;
performance optimisation 235-40 243·
vectorisation 94, 96, 99-103, 111~18 ,'
122

SPMD (single program multiple data)
184-6, 188,201,218-19,257

standai·ds 19, 61, 155 , 182-4, 188
statistics 27, 34, 39, 41
storage, data 224, 236, 239 , 242, 252 ,

255,257, 269
subroutines: debugging 248; GAM 217,

219-20, 225-6, 236; HPF 257;
message-passing 182, 184-5 , 188, 192,
204; multi-tasking 141, 143-4; parallel
programming 154; performance
optimisation 237-8, 240; vectorisation
108-10

subscript 98, 99, 144, 245-6
sum M numbers example 188-96, 205-6
S1m Ultrasparc 50, 116
supercomputers 4 , 12- 14, 19- 21, 29-30,

40,45, 52, 54, 57, 59-60, 73,212,
235, 251; see also vector
supercomputers

superlinear scaleability 65 , 239
synclu·onisation 78, 82, 85, 91 , 243-4,

248- 9

task farms 151, 219-25
telephone system compared to

message-passing 180
teraflop machines 1, 9, 14, 22-4, 36,

41, 48, 51- 4, 58-9, 81, 103 , 235,
255

tlùnking in parallel 14-15, 62-4, 69-71
rime 15-16, 23, 30, 34-7, 44-5 , 108-9,

190, 194-6, 213,259-64
traditional computing 21
Treleaven et al. 79
Trewi.n 149, 220
typology of applications 26-8

•

Index 289

mùversality of message-passing 181-2
unrolling 121-2, 147, 238
urbai1 deprivation grai1ts 37-9
urban systems modelling 29, 269

Valiai1t 259
validation of results 61, 105 , 110, 116,

194, 238,247, 250 , 256
vector supercomputers 9, 13, 15-16, 23,

35, 50, 52,60-1 , 77-8,82-5,94-122,
140, 182

vectorisation 40, 81, 82- 5, 90-1, 139-42,
144, 146-8, 151, 155, 259; GAM 211,
214,236-7

vendors 61, 139-40, 151, 155, 182-4
von Neumai1n computer 77

wall building, parallelism as 69-71
wall dock rimes 31, 55- 6, 65-6, 94, 96,

100-1,118 , 144,146,149,191,194,
216- 18,224,235,238

warehouses, data 28, 45
Wilson 29, 30, 73 , 119, 149
Wilson et al. 18
workstations: applications ai1d HPC 13,

15- 16, 23-4, 35, 42, 44; benchmark.ing
251, 259; bugs 245; development of
HPC ai1d 2, 6-7, 9; farms 178, 235;
HPC ai1d 48, 50-1, 54, 73; message
passi..ng 179, 182- 3, 185, 190; parallel
prograimning 139-40; parallel
processing hai·dware 77- 8, 81, 85-6;
spatial interaction mode! 196, 201 ,
203; vectorisation 99- 101, 104,
110-11 , 116- 17

Xiong and Marble 16

i ii Pf Corn & Art of Para Pr' .·
ISBN 0-415-15692-0

911~ ~~Wll//WU~~ll

